Urease

Fonte: testwiki
Revisão em 12h32min de 20 de junho de 2024 por imported>Eduardo Bagagli (Organizei a sentença, pois fungos estava "misturado" junto com bactérias; acrescentei duas referências sobre o assunto (urease positivos) em fungos)
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa
Figura 1 - Modelo 3D de urease de Klebsiella aerogenes, dois íons Ni2+ são mostrados como esferas verdes. [1]

Ureia amidohidrolases (EC 3.5.1.5), também conhecidas como ureases, são metaloenzimas de alto peso molecular, que contêm níquel e são compostas por várias subunidades.[2]

Elas são amplamente encontradas em diversas bactérias, plantas, fungos, algas e alguns invertebrados, além de desempenharem um papel essencial no solo como uma enzima do solo.[3][4]

A urease desempenha uma função catalítica de grande importância, que envolve a hidrólise da ureia, como ilustrado na reação a seguir:

H2N-CO-NH2 + H2O urease H2N-COOH + NH3 HA2O H2CO3 + 2NH3

Os produtos imediatos dessa reação enzimática são NH3 e carbamato; entretanto, os produtos observados são NH3 e H2CO3, devido à hidrólise espontânea do carbamato. O aumento na concentração de amônia e o subsequente aumento no pH resultantes da catálise da urease têm implicações médicas e agrícolas.[5][6]

História

A ureia, o substrato natural das ureases, foi inicialmente isolada da urina humana por Rouelle em 1773. Cerca de cinquenta anos depois, Wöhler conseguiu sintetizar a ureia, representando a primeira molécula orgânica obtida a partir de compostos inorgânicos.[7] Em 1864, van Tiehem isolou o primeiro microrganismo ureolítico, o Micrococcus ureae. Em 1874, Musculus isolou a primeira enzima com atividade ureolítica da urina pútrida. Em 1890, Miquel propôs o nome "urease" para essa enzima.[4] Em 1926, James B. Sumner, ao investigar as sementes de Canavalia ensiformis (feijão-de-porco) com o propósito de elucidar a natureza química das enzimas, isolou cristais de proteínas que exibiam, em suas próprias palavras, "de maneira extraordinária, a capacidade de decompor a ureia em carbonato de amônio". Essa característica, que era idêntica à habilidade já estabelecida da urease, representou o marco inicial na demonstração de que as enzimas eram, de fato, compostas por proteínas.[8] A descoberta de Sumner lhe valeu o Prêmio Nobel de Química em 1946. Durante as décadas de 1950 a 1970, um período de grande progresso no estudo da estrutura e da bioquímica das enzimas, foram estabelecidos conceitos fundamentais, como a eficiência, a estabilidade e a alta especificidade da urease.[9] Adicionalmente, em 1975, surgiu o reconhecimento da significativa importância biológica do níquel. Esse reconhecimento ocorreu após minuciosos estudos realizados pelo grupo liderado por Zerner, os quais revelaram a presença de íons de níquel no sítio ativo da urease do feijão-de-porco, destacando a essencialidade desses íons para a atividade catalítica da enzima.[10] Até então, o níquel era tratado como um metal sem relevância biológica,[11] mesmo diante das limitações analíticas que, naquela época, impediam uma avaliação precisa deste metal.[12]

Considera-se que o principal propósito das ureases seja a capacidade de permitir que os organismos aproveitem a uréia, independentemente de sua origem interna ou externa, como uma valiosa fonte de nitrogênio.[13][14] Além dessa função fundamental, as ureases demonstram notável versatilidade em suas aplicações, podendo desempenhar papéis adicionais, tais como no transporte de nitrogênio, na defesa de plantas e na regulação do ambiente gástrico em mamíferos para possibilitar a colonização bacteriana.[15] A função das ureases é de grande importância no processo patogênico de várias espécies bacterianas, como Proteus mirabilis, Staphylococcus saprophiticus, Yersinia enterocolitica e Ureaplasma urealiticum.[16]Contudo, um exemplo frequentemente destacado na literatura é o da urease de Helicobacter pylori, devido à sua ampla prevalência como patógeno em seres humanos e ao papel crucial desempenhado por essa enzima em sua patogênese.[17] Além disso, a capacidade de produzir urease foi observada em várias espécies de fungos, embora informações genéticas detalhadas estejam disponíveis apenas para um grupo seleto dessas espécies.[18]Como exemplos, tem-se a Schizosaccharomyces pombe[19]e patógenos humanos como Coccidioides immitis[20] e Cryptococcus neoformans.[21] Quando se trata das ureases encontradas em plantas, as informações genéticas mais abrangentes estão acessíveis principalmente para a soja.[22]

Estrutura

Figura 2 - Sítio ativo dinuclear Ni-Ni da urease.

As informações estruturais sobre a proteína urease provêm de cristais de homólogos das bactérias K. aerogenes[13], Bacillus pasteurii[23], H. pylori[15] e das sementes da planta feijão-de-porco, Canavalia ensiformis[24]. Em K. aerogenes e B. pasteurii, a estrutura quaternária é composta por um trímero de trímeros (UreABC)3, com UreA~11 kDa, UreB~12-14 kDa e UreC~60-61 kDa.[13][23] Por outro lado, no H. pylori, a estrutura quaternária consiste em um tetrâmero de trímeros de dímeros ((UreAB)3)4, onde as subunidades menores se fundem em uma única subunidade ~26,5 kDa.[15] Na urease de feijão-de-porco, as subunidades UreA, UreB e UreC se fundiram para formar uma única subunidade de ~90 kDa. Essa subunidade, por sua vez, se organiza em dímeros de homotriômeros.[24] Cada subunidade UreA contém dois íons níquel (Ni2+), que formam o sítio ativo. Os centros de níquel~3,5-3,7 Å de distância e são ligados por um resíduo carbamato de lisina pós-traducionalmente modificado e um íon hidróxido.[25] Em estudos de mutagênese direcionada em K. aerogenes, verificou-se que o resíduo de lisina carbamilado não é essencial para a catálise e pode ser substituído por um ácido orgânico não covalente.[26] Cada um dos átomos de níquel também é coordenado por dois resíduos de histidina e uma molécula de água terminalmente ligada, resultando em um átomo de níquel pentacoordenado em uma geometria piramidal quadrada e um centro de níquel pseudo-octaédrico hexacoordenado que possui um ligante adicional de um resíduo de ácido aspártico (Figura 2). Uma quarta molécula de água é ligada por hidrogênio em proximidade ao cluster dimetálico, formando uma disposição tetraédrica distorcida de quatro moléculas de água/hidroxila que foi sugerida como um intermediário tetraédrico durante o ciclo catalítico.[25]

Mecanismo catalítico das ureases

O mecanismo de hidrólise da ureia, catalisado pela enzima urease, tem sido amplamente debatido na comunidade científica.[27] [28] Atualmente, parece ter surgido um consenso em relação a esse mecanismo, apoiado por meio de estudos envolvendo inibidores da urease.[29][30][31][32] Após assumir a posição das moléculas de água W1-W3 (Figura 3A) no local ativo da urease, a ureia estabelece uma ligação com o íon Ni(1) por meio do oxigênio carbonílico, tornando o carbono da ureia mais eletrófilo e, assim, mais suscetível a um ataque nucleofílico (Figura 3B). Em seguida, a ureia se liga ao Ni(2) através de um dos seus átomos de nitrogênio amino, estabelecendo uma ligação bidentada com a urease (Figura 3C). Acredita-se que essa ligação facilite o ataque nucleofílico da água ao carbono carbonílico, resultando na formação de um intermediário tetraédrico (Figura 3D), a partir do qual NH3 e carbamato são liberados (Figura 3E).

No entanto, havia divergências em relação a essa proposição. Enquanto Benini e colaboradores, em 1999[23], propuseram que o ataque nucleofílico era realizado pela hidroxila de ligação, que fornecia prótons ao grupo NH3, Karplus e colaboradores em 1997[9], argumentaram que um resíduo His da aba móvel do sítio ativo atuava como ácido geral nessa protonação. Como alternativa, Karplus e colaboradores, em 1997,[9] também consideraram a ligação monodentada da ureia ao Ni(1), com Ni(2) fornecendo a molécula de água como nucleófilo para o carbono carbonílico da ureia. Além dessas duas hipóteses, Estiu e Merz, em 2007, com base em modelos computacionais simplificados do sítio ativo, propuseram que a hidrólise e a eliminação poderiam ocorrer de forma competitiva nas ureases, com uma "eliminação assistida por proteína" sendo favorecida.[33]

Ação na patogênese

As ureases bacterianas desempenham um papel crucial na origem de diversas condições médicas, sendo associadas à encefalopatia hepática, formação de cálculos urinários e desenvolvimento de úlceras pépticas.[34]

Cálculos urinários

Os cálculos urinários formados por infecção consistem em uma combinação de estruvita (MgNH4PO4•6H2O) e apatita de carbonato [Ca10(PO4)6•CO3].Esses íons de carga múltipla são inicialmente solúveis, mas tornam-se insolúveis quando a urease microbiana promove a hidrólise da ureia, resultando na produção de amônia e no aumento do pH do ambiente circundante de cerca de 6,5 para 9. A alcalinização resultante propicia a cristalização das pedras. Em humanos, a urease microbiana predominante associada a pedras urinárias induzidas por infecção é a Proteus mirabilis.[35]

Encefalopatia hepática

Estudos indicam que a presença simultânea do Helicobacter pylori e cirrose hepática está associada ao desenvolvimento de encefalopatia hepática e coma hepático.[36] O Helicobacter pylori libera ureases microbianas no estômago, as quais, por sua vez, hidrolisam a ureia, gerando amônia e ácido carbônico. Como essas bactérias estão localizadas no estômago, a amônia produzida é prontamente absorvida pelo sistema circulatório a partir do lúmen gástrico.[36] Isso resulta em níveis elevados de amônia no sangue, conhecido como hiperamônia; a eliminação do Helicobacter pylori demonstra reduções significativas nos níveis de amônia.

Úlceras pépticas

O Helicobacter pylori é identificado como a causa de úlceras pépticas em 55–68% dos casos relatados.[37] Essa conclusão foi respaldada pela observação de uma redução no sangramento e na recorrência da úlcera após a erradicação desse patógeno específico.[37] No estômago, ocorre um aumento no pH da camada mucosa devido à hidrólise da ureia, o que limita o movimento de íons de hidrogênio entre as glândulas gástricas e o lúmen gástrico.[34] Adicionalmente, as concentrações elevadas de amônia impactam as junções apertadas entre as células, aumentando a permeabilidade e causando perturbações na membrana mucosa gástrica.[34][38]

Teste rápido de urease

O teste rápido de urease, também conhecido como teste CLO (Campylobacter-like organism), é um teste diagnóstico rápido para o diagnóstico de Helicobacter pylori.[39] A base do teste é a capacidade do H. pylori de secretar a enzima urease, que catalisa a conversão da ureia em amônia e dióxido de carbono. O aumento do pH da urina, resultante dessa reação, é detectado pelo teste.[40]

Além do H. pylori, outros organismos positivos para urease também podem resultar em um resultado positivo no teste. Esses organismos incluem bactérias, como Proteus, Nocardia, Ureaplasma, Klebsiella, Staphylococcus epidermidis e Staphylococcus saprophyticus e fungos como Cryptococcus, Trichosporon, Malassezia, Coccidioides, Schizosaccharomyces, Emergomyces.[40][41][42]

Inibidores de urease

Íons de metais pesados

A urease é altamente sensível a quantidades mínimas de íons de metais pesados. Foi comprovado que a inibição da urease por esses íons resulta da reação com grupos sulfidrilas no sítio ativo da enzima.[43] A reação é análoga à formação de sulfetos metálicos. Portanto, os metais que formam os sulfetos mais insolúveis são os inibidores mais fortes da urease. A inibição por Ag+ e Hg2+ é tão intensa que concentrações na faixa de 10-6 M podem inativar completamente a urease.[44] Também foi demonstrado que a inibição da urease por íons de metais pesados (Mn2+, Fe3+, Co2+, Zn2+, Cd2+, Ni2+, Cu2+, Ag+ e Hg2+) é não competitiva.[43][44]

Inibidores orgânicos

Muitos compostos, além de substrato, produto e tampões, são inibitórios para a urease. Entre eles estão análogos de ureia, incluindo ureias alquiladas, tioureias, hidroxureia e ácidos hidroxâmicos, fosforoamidas, tióis, ácidos bóricos, ácidos borônicos, fluoreto e reagentes reativos a tióis.[45] [12][46] Inibidores de urease têm potencial valor no controle de infecções humanas no trato urinário e gastrointestinal, além de aumentar a eficiência dos fertilizantes de ureia. [45]

Algumas ocorrências e funções da urease

Ureases em plantas

A urease, em conjunto com a ureia amidolase, desempenha um papel crucial na degradação de ureia em plantas, facilitando sua assimilação celular. [47][48] Em plantas superiores, que possuem sistemas de transporte de ureia, a otimização da nutrição nitrogenada ocorre com base no ambiente externo ou na síntese interna. A presença de ureases no solo permite a absorção de ureia pelas raízes como amônia, prática explorada na fertilização.[49] No entanto, doses elevadas de ureia podem representar riscos tanto para o ambiente quanto para as plantas.[50] Além disso, a ureia é aplicada foliarmente, sendo absorvida rapidamente, embora em concentrações elevadas possa ser tóxica. Nas células vegetais, a urease desempenha um papel no metabolismo nitrogenado,[50][51] [48] sendo a ureia um intermediário essencial em processos metabólicos.[52][53][54] A urease, além de atuar na defesa contra patógenos gerando amônia, também exibe propriedades inseticidas e antifúngicas.[55][56][57][58][59] Encontrada amplamente em plantas, a urease é especialmente abundante em sementes de leguminosas, como soja (0,012% de urease/massa seca) e feijão (0,07–0,14%).[60][61][62]

Problemas de urease no solo e volatilização de amônia

A atividade ureolítica nos solos, especialmente proveniente da urease do solo, desempenha um papel crucial na agricultura, convertendo ureia em amônia para utilização eficiente como fertilizante de nitrogênio.[63][64][65][66] No entanto, essa hidrólise rápida pode resultar em perdas improdutivas de nitrogênio por volatilização de amônia, causando impactos adversos no ambiente e nas plantas.[63][64][65] A volatilização de amônia também é um desafio na gestão de resíduos de animais, reduzindo o valor do esterco líquido como fertilizante.[67] Além disso, esforços para reciclar a urina visam economizar água, suprimindo a atividade da urease para evitar emissões de amônia.[67] Em todas essas situações, a possibilidade de controlar a atividade da urease por meio do uso de inibidores enzimáticos é uma consideração importante.

Ureases na biomineralização de carbonato de cálcio

Ureases desempenham um papel crucial na formação de carbonato de cálcio, participando da hidrólise da ureia e promovendo a precipitação de CaCO3 em diversos ambientes naturais, como solos e águas.[68][69][70] Esse processo é atribuído a três principais funções bacterianas: aumento da alcalinidade, elevação da concentração de carbono inorgânico dissolvido e atuação como locais de nucleação cristalina.[69][70] Além de contribuir para a compreensão dos processos de calcificação na natureza, a calcificação biocatalítica biomimética apresenta potencial em diversas aplicações biotecnológicas inovadoras[71], como a preparação de materiais avançados de carbonato[72][73][74], limpeza de águas residuais[75], restauração de monumentos históricos[76] e uso como agente de obstrução em reservatórios de petróleo.[77][78] A hipótese de urease relacionada à biomineralização de carbonato de cálcio por invertebrados sugere implicações nas extinções em massa da Terra[79][80], destacando a influência da pressão parcial de CO2 atmosférico e do pH da água do mar nesse contexto.

Ver também

Predefinição:Referências

  1. Predefinição:Citar periódico
  2. Predefinição:Citar periódico
  3. Predefinição:Citar periódico
  4. 4,0 4,1 Predefinição:Citar periódico
  5. Predefinição:Citar periódico
  6. Predefinição:Citar periódico
  7. Predefinição:Citar livro
  8. Predefinição:Citar periódico
  9. 9,0 9,1 9,2 Predefinição:Citar periódico
  10. Predefinição:Citar periódico
  11. Predefinição:Citar periódico
  12. 12,0 12,1 Predefinição:Citar periódico
  13. 13,0 13,1 13,2 Predefinição:Citar periódico
  14. Predefinição:Citar periódico
  15. 15,0 15,1 15,2 Predefinição:Citar periódico
  16. Predefinição:Citar periódico
  17. Predefinição:Citar periódico
  18. Predefinição:Citar periódico
  19. Predefinição:Citar periódico
  20. Predefinição:Citar periódico
  21. Predefinição:Citar periódico
  22. Predefinição:Citar periódico
  23. 23,0 23,1 23,2 Predefinição:Citar web
  24. 24,0 24,1 Predefinição:Citar periódico
  25. 25,0 25,1 Predefinição:Citar periódico
  26. Predefinição:Citar periódico
  27. Predefinição:Citar periódico
  28. Predefinição:Citar periódico
  29. Predefinição:Citar periódico
  30. Predefinição:Citar periódico
  31. Predefinição:Citar periódico
  32. Predefinição:Citar periódico
  33. Predefinição:Citar periódico
  34. 34,0 34,1 34,2 Predefinição:Citar periódico
  35. Predefinição:Citar periódico
  36. 36,0 36,1 Predefinição:Citar periódico
  37. 37,0 37,1 Predefinição:Citar periódico
  38. Predefinição:Citar periódico
  39. Predefinição:Citar web
  40. 40,0 40,1 Predefinição:Citar web
  41. Predefinição:Citar periódico
  42. Predefinição:Citar periódico
  43. 43,0 43,1 Predefinição:Citar periódico
  44. 44,0 44,1 Predefinição:Citar periódico
  45. 45,0 45,1 Predefinição:Citar periódico
  46. Predefinição:Citar periódico
  47. Predefinição:Citar periódico
  48. 48,0 48,1 Predefinição:Citar periódico
  49. Predefinição:Citar periódico
  50. 50,0 50,1 Predefinição:Citar periódico
  51. Predefinição:Citar periódico
  52. Predefinição:Citar periódico
  53. Predefinição:Citar periódico
  54. Predefinição:Citar periódico
  55. Predefinição:Citar periódico
  56. Predefinição:Citar periódico
  57. Predefinição:Citar periódico
  58. Predefinição:Citar periódico
  59. Predefinição:Citar periódico
  60. Predefinição:Citar periódico
  61. Predefinição:Citar periódico
  62. Predefinição:Citar periódico
  63. 63,0 63,1 Predefinição:Citar periódico
  64. 64,0 64,1 Predefinição:Citar periódico
  65. 65,0 65,1 Predefinição:Citar periódico
  66. Predefinição:Citar periódico
  67. 67,0 67,1 Predefinição:Citar periódico
  68. Predefinição:Citar periódico
  69. 69,0 69,1 Predefinição:Citar periódico
  70. 70,0 70,1 Predefinição:Citar periódico
  71. Predefinição:Citar periódico
  72. Predefinição:Citar periódico
  73. Predefinição:Citar periódico
  74. Predefinição:Citar periódico
  75. Predefinição:Citar periódico
  76. Predefinição:Citar periódico
  77. Predefinição:Citar periódico
  78. Predefinição:Citar periódico
  79. Predefinição:Citar periódico
  80. Predefinição:Citar periódico