Sistema de cadeia reescrito

Fonte: testwiki
Revisão em 00h34min de 10 de janeiro de 2023 por imported>Chicocvenancio (Removendo interwikis manuais)
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa

Predefinição:Sem-fontes Um sistema de cadeia reescrito é um sistema de substituição usado para criar cadeias lógias a partir de determinadas regras de reescrita.

Bases de equivalência para sistemas de cadeias reescritos

Certas formas básicas que formam o sistema de cadeias reescritas são essencialmente equivalentes ao sistema de termos reescritos Supomos que temos cadeias lógicas sobre algum alfabeto A, e apenas damos uma lista de transformações com regras em cadeia lógica sob a forma: x0x1xny0y1ym,xi,yiA; isso indica que qualquer cadeia X 0x1...xn é recolocada com Y 0y1...ym.

Podemos reformular o sistema por um termo de um sistema reescrito—as regras de transformação podem se tornar : x0(x1((xn(x))))y0(y1((ym(x))), onde cada X xi e yi constitui os símbolos de funções em um termo de um sistema reescrito.

Cadeias são esses termos de sistemas reescritos que fazem crescer o termo.

Exemplos

exemplos de modelos computacionais baseados em determinadas cadeias reescritas incluem o algoritmo de Markov, sistemas pós-canônicoss (e.g., sistemas Tags), uma variedade de formas gramaticais, nos L-systems (os últimos se conduzindo a certos tipos de fractais, como o conjunto de Cantor e a Esponja de Menger).

Ver também

Predefinição:Esboço-informática