Regra dos sinais de Descartes

Fonte: testwiki
Revisão em 22h18min de 29 de agosto de 2020 por imported>Juan90264 (v2.03b - Corrigido usando WP:PCW (en dash ou em dash))
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa

A regra dos sinais de Descartes, primeiramente descrita por René Descartes no seu trabalho La géométrie, é um teorema que determina o número de raízes positivas e negativas de um polinômio.

Segundo a regra, se os termos de um polinômio com coeficientes reais são colocados em ordem decrescente de grau, então o número de raízes positivas do polinômio é ou igual ao número de permutações de sinal ou menor por uma diferença par. Mais precisamente falando, o número de permutações é igual ao número de raízes positivas acrescido do número de raízes imaginárias (que sempre acontecem ao pares em polinômios de coeficientes reais).

Exemplo

x3+x2x1

Possui uma mudança de sinal entre o segundo e o terceiro termos. Portanto possui apenas uma raiz positiva.

Para contar o número de raízes negativa, fazemos a substituição xx:

x3+x2+x1

Este polinômio tem duas permutações de sinal, logo o polinômio original possui 2 ou 0 raízes negativas.

Para confirmar o resultado, observe a fatoração do polinômio:

(x+1)2(x1),

Então as raízes são -1 (duas vezes) e 1

Ver também

Ligações externas

Predefinição:Portal3