Associação de molas
Predefinição:Sem-notas Predefinição:Expandir A associação de molas resulta em uma mola equivalente (com uma constante elástica equivalente). A tabela a seguir compara as associações de molas lineares (que obedecem a lei de Hooke) em série e em paralelo:
| Duas molas em série | Duas molas em paralelo |
Deduções das fórmulas
Molas em série
Identificamos um conjunto de molas em série se tomarmos de dois a dois e uma de suas extremidades estarem conectadas uma na outra. A força é então distribuída por igual no conjunto.
O deslocamento total do bloco é a soma dos deslocamentos de cada mola:
Através da Lei de Hooke:
, e
Substituindo:
Dividindo ambos os lado da equação:
Se verificarmos se é verdade que:
Como as constantes elásticas são positivas, a condição é satisfeita, logo a constante elástica resultante em série sempre será menor que a constante das molas separadas, ou seja, ao associamos duas molas em série, obtemos a mola equivalente mais deformável.
Para um conjunto de molas em séries:
Molas em paralelo
Este tipo de configuração é caracterizado pelas duas extremidades do conjunto de molas estarem todos unidos em duas superfícies. Com a variação da distância entre as duas superfícies as deformações em todas as molas serão iguais.
Cada mola possui a sua tração:
e e
substituindo:
Dividindo:
Ou seja, ao associamos duas molas em paralelo, obtemos a mola equivalente mais rígida.
Equivalência em Energia Potencial

Diferente de um sistema massa-mola convencional, as molas podem estar ligadas a componentes rígidos como polias, cilindros, blocos, hastes e alavancas que são componentes mecânicos comum em máquinas. Dada a complexidade de um sistema vibratório, a modelagem matemática do problema é utilizada para incluir detalhes de todas os componentes do sistema sem torná-lo muito complexo. Em vibrações mecânicas os componentes mecânicos que sofrem vibração são modelados como molas para uma análise mais simplificadora do problema. utilizando a associação de molas por energia potencial.
- Exemplo: A lâmina de serra presa na morsa pode ser modelada matematicamente como uma haste engastada em uma extremidade e em balanço na outra, onde é possível determinar uma constante elástica equivalente para esta haste.
A abordagem da energia potencial total é escrita como:

onde o termo do lado esquerdo representa a energia armazenada na mola equivalente do sistema e o termo do lado direito representa a soma das energias potenciais armazenadas nas componentes sendo molas ou modelados como molas.
e também do lado direito da equação:
tanto , , e outros são constantes que podem ser substituídas a partir da tabela de equivalência em mola .

Referências
- Rao, Singiresu (2009). Vibrações Mecânica. [S.l.]: Pearson

