Grafo de Folkman

Fonte: testwiki
Revisão em 19h32min de 29 de março de 2013 por imported>KLBot2 (Bot: A migrar 5 interwikis, agora providenciados por Wikidata em d:Q3115489)
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa

Predefinição:Info/Grafo No campo da matemática da teoria dos grafos o grafo de Folkman, nomeado em honra a Jon Folkman, é um grafo bipartido 4-regular com 20 vértices e 40 arestas.[1]

O grafo de Folkman é Hamiltoniano e tem número cromático 2, índice cromático 4, raio 3, diâmetro 4 e cintura 4. e é um grafo perfeito tanto 4-vértice-conectado quanto 4-aresta-conectado.

Propriedades algébricas

O grupo de automorfismo do grafo de Folkman age transitivamente em suas arestas, mas não em seus vértices. É o menor grafo não direcionado, que é aresta-transitivo e regular, mas não é vértice-transitivo.[2] Esses grafos são chamados semi-simétricos e foram estudados pela primeira vez por Folkman em 1967 que descobriu o grafo de 20 vértices, que agora é nomeado em sua honra.[3]

Como um grafo semi-simétrico, o gráfico de Folkman é bipartido, e seu grupo de automorfismo age transitivamente em cada um dos dois conjuntos de vértices da bipartição. No diagrama abaixo, indicando o número cromático do grafo, os vértices verdes não podem ser mapeados para os vermelhos por qualquer automorfismo, mas qualquer vértice vermelho pode ser mapeado em qualquer outro vértice vermelho e qualquer vértice verde pode ser mapeado em qualquer outro vértice verde.

O polinômio característico do grafo de Folkman é (x4)x10(x+4)(x26)4.

Galeria

Predefinição:Referências

  1. Predefinição:MathWorld
  2. Skiena, S. Implementing Discrete Mathematics: Combinatorics and Graph Theory with Mathematica. Reading, MA: Addison-Wesley, pp. 186-187, 1990
  3. Predefinição:Citar jornal