Teorema de Pompeiu

Fonte: testwiki
Revisão em 16h51min de 12 de abril de 2020 por imported>Sabbut
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa

O teorema de Pompeiu é um resultado da geometria plana, descoberto pelo matemático romeno Dimitrie Pompeiu. O teorema é simples, mas não clássico. Estabelece que:

Dado um triângulo equilátero ABC no plano, e um ponto P no plano do triângulo ABC, os comprimentos PA, PB e PC formam os lados de um triângulo (talvez, degenerado).

A prova é rápida. Considere-se uma rotação de 60° sobre o ponto C. Assuma-se que A ligue-se a B, e P ligue-se a P '. Então temos PC = PC, e PCP = 60. Por isso, o triângulo PCP ' é equiláterio e PP = PC. É óbvio que PA = PB. Então o triângulo PBP ' tem lados iguais a PA, PB, e PC e a demonstração por construção está completa.

Predefinição:Referências