Energia potencial elétrica

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Predefinição:Mais notas Predefinição:DistinguishPredefinição:Eletromagnetismo A energia potencial elétrica, ou energia potencial eletrostática, é a energia potencial que resulta da interação conservativa de Coulomb e está associada à configuração de um conjunto particular de cargas pontuais dentro de um sistema definido. Um objeto pode ter energia potencial elétrica em virtude de dois elementos principais: sua própria carga elétrica e sua posição relativa a outros objetos eletricamente carregados.

O termo "energia potencial elétrica" ​​é usado para descrever a energia potencial em sistemas com campos elétricos variantes no tempo, enquanto o termo "energia potencial eletrostática" é usado para descrever a energia potencial em sistemas com campos elétricos invariantes no tempo.

Definição

A energia potencial elétrica de um sistema de cargas pontuais é definida como o trabalho necessário para montar esse sistema de cargas aproximando-as, como no sistema de uma distância infinita a uma distância r, finita.

A energia potencial eletrostática, UE, de uma carga pontual q na posição r na presença de um campo elétrico E é definida como o negativo do trabalho W feito pela força eletrostática para trazê-la da posição de referência rref[nota 1] para essa posição r.[1][2]Predefinição:Rp[nota 2] UE(𝐫)=Wrrefr=𝐫ref𝐫q𝐄(𝐫)d𝐫 Nessa expressão E é o campo eletrostático e dr é o vetor deslocamento em uma curva da posição de referência rref para a posição final r

A energia potencial eletrostática também pode ser definida a partir do potencial elétrico da seguinte forma:

A energia potencial eletrostática, UE, de uma carga pontual q na posição r na presença de um potencial elétrico é definida como o produto da carga e do potencial elétrico. UE(𝐫)=qΦ(𝐫) Nessa expressão Φ é o potencial elétrico gerado pelas cargas, que é uma função da posição r.

Unidades

A unidade do SI para a energia potencial elétrica é o joule (em homenagem ao físico inglês James Prescott Joule).[3] No sistema CGS, o erg é a unidade de energia, sendo igual a 10−7 J. Além disso, elétron-volts podem ser usados, sendo que 1 eV = 1,602 × 10−19 J.

Energia potencial eletrostática de uma carga pontual

Uma carga pontual q na presença de outra carga pontual Q

Uma carga pontual q no campo elétrico de outra carga Q.

A energia potencial eletrostática, UE, de um ponto de carga q na posição r na presença da carga pontual Q, tomando uma separação infinita entre as cargas como a posição de referência, é:

UE(r)=keqQr
onde ke=14πε0 refere-se a constante de Coulomb, r é a distância entre as cargas pontuais q e Qi são as cargas (não os valores absolutos das cargas — ou seja, um elétron teria um valor negativo de carga quando colocado na fórmula).[4] O seguinte esboço de prova afirma a derivação da definição de energia potencial elétrica e da Lei de Coulomb para esta fórmula.

Carga pontual q na presença de n cargas pontuais Qi

Energia potencial eletrostática de q devido a Q1 e Q2 sistema de carga: UE=q14πϵ0(Q1r1+Q2r2)

A energia potencial eletrostática, UE, de uma carga pontual q na presença de n cargas pontuais Qi , tomando uma separação infinita entre as cargas como a posição de referência, é:

UE(r)=keqi=1nQiri
onde ke=14πε0 é constante de Coulomb, ri é a distância entre as cargas pontuais q e Qi são os valores sinalizados das cargas.[6]

Energia potencial eletrostática armazenada em um sistema de cargas pontuais

A energia potencial eletrostática UE armazenada em um sistema de N cargas q1, q2, ..., qN nas posições r1, r2, ..., rN respectivamente, é:

UE=12i=1NqiΦ(𝐫i)=12kei=1Nqij=1N(ji)qjrij
onde, para cada i valor, Φ(ri) é o potencial eletrostático devido a todas as cargas pontuais exceto uma em ri,[nota 3] e é igual a:[7]
Φ(𝐫i)=kej=1N(ji)qiqj𝐫ij,
onde rij é a distância entre qj e qi.[8]

Energia armazenada em um sistema de uma carga pontual

A energia potencial eletrostática de um sistema contendo apenas uma carga pontual é zero, pois não há outras fontes de força eletrostática contra a qual um agente externo deva trabalhar para mover a carga pontual do infinito até sua localização final. Dessa forma, pode-se também dizer que a energia potencial eletrostática é zero quando uma carga está infinitamente distante da outra.[9]

Uma questão comum surge com relação à interação de uma carga pontual com seu próprio potencial eletrostático. Uma vez que essa interação não age para mover a carga pontual em si, ela não contribui para a energia armazenada do sistema.

Energia armazenada em um sistema de duas cargas pontuais

Considere trazer uma carga pontual, q, em sua posição final perto de uma carga pontual, Q1. O potencial eletrostático Φ(r) devido a Q1 é

Φ(r)=keQ1r[10]

Portanto, obtemos, a energia potencial elétrica de q no potencial de Q1 como

UE=14πε0qQ1r1

onde r1 é a separação entre as duas cargas pontuais.

Energia armazenada em um sistema de três cargas pontuais

A energia potencial eletrostática de um sistema de três cargas não deve ser confundida com a energia potencial eletrostática de Q1 devido às duas cargas Q2 e Q3, pois esta última não inclui a energia potencial eletrostática do sistema das duas cargas Q2 e Q3.

A energia potencial eletrostática armazenada no sistema de três cargas é:

UE=14πε0[Q1Q2r12+Q1Q3r13+Q2Q3r23]

Energia armazenada em uma distribuição de campo eletrostático

A densidade de energia, ou energia por unidade de volume, dUdV, do campo eletrostático de uma distribuição de carga contínua é:

ue=dUdV=12ε0|𝐄|2.

Energia armazenada em elementos eletrônicos

A energia potencial elétrica armazenada em um capacitor é UE=½ CV2

Alguns elementos em um circuito podem converter energia de uma forma para outra. Por exemplo, um resistor converte energia elétrica em calor, o que é conhecido como efeito Joule. Um capacitor o armazena em seu campo elétrico. A energia potencial elétrica total armazenada em um capacitor é dada por

UE=12QV=12CV2=Q22C[11][7]

onde C é a capacitância, V é a diferença de potencial elétrico e Q a carga armazenada no capacitor.

A energia potencial eletrostática total também pode ser expressa em termos do campo elétrico na forma

UE=12VEDdV[7]

onde D é o campo de deslocamento elétrico dentro de um material dielétrico e a integração é sobre todo o volume do dielétrico.

A energia potencial eletrostática total armazenada dentro de um dielétrico carregado também pode ser expressa em termos de uma carga de volume contínuo, ρ,

UE=12VρΦdV[7]

onde a integração está em todo o volume do dielétrico.

Estas duas últimas expressões são válidas apenas para os casos em que o menor incremento de carga é zero (dq0) como dielétricos na presença de eletrodos metálicos ou dielétricos contendo muitas cargas.

Ver também

Notas

  1. A referência zero é geralmente considerada como um estado no qual as cargas pontuais individuais estão muito bem separadas ("estão em separação infinita") e em repouso.
  2. Alternativamente, também pode ser definido como o trabalho W feito por uma força externa para movê-lo da posição de referência rref para alguma posição r. No entanto, ambas as definições produzem os mesmos resultados.
  3. O fator da metade é responsável pela 'contagem dupla' de pares de carga. Por exemplo, considere o caso de apenas duas cargas.

Predefinição:Reflist

Predefinição:Referências

Predefinição:Energias fisico-químicas Predefinição:Controle de autoridade