Ficheiro:Animated construction of Sierpinski Triangle.gif
Fonte: testwiki
Saltar para a navegação
Saltar para a pesquisa
Dimensões desta antevisão: 581 × 599 píxeis. Outras resoluções: 233 × 240 píxeis | 465 × 480 píxeis | 950 × 980 píxeis.
Ficheiro original (950 × 980 píxeis, tamanho: 375 kB, tipo MIME: image/gif, cíclico, 10 quadros, 5,0 s)
Este ficheiro vem da wiki na wiki Wikimedia Commons e pode ser usado por outros projetos. A descrição na página original de descrição do ficheiro é mostrada abaixo.
Descrição do ficheiro
| DescriçãoAnimated construction of Sierpinski Triangle.gif |
English: Animated construction of Sierpinski Triangle Self-made. LicenciamentoI made this with SAGE, an open-source math package. The latest source code lives here, and has a few better variable names & at least one small bug fix than the below. Others have requested source code for images I generated, below. Code is en:GPL; the exact code used to generate this image follows: #***************************************************************************** # Copyright (C) 2008 Dean Moore < dean dot moore at deanlm dot com > # < deanlorenmoore@gmail.com > # # # Distributed under the terms of the GNU General Public License (GPL) # http://www.gnu.org/licenses/ #***************************************************************************** ################################################################################# # # # Animated Sierpinski Triangle. # # # # Source code written by Dean Moore, March, 2008, open source GPL (above), # # source code open to the universe. # # # # Code animates construction of a Sierpinski Triangle. # # # # See any reference on the Sierpinski Triangle, e.g., Wikipedia at # # < http://en.wikipedia.org/wiki/Sierpinski_triangle >; countless others are # # out there. # # # # Other info: # # # # Written in sage mathematical package sage (http://www.sagemath.org/), hence # # heavily using computer language Python (http://www.python.org/). # # # # Important algorithm note: # # # # This code does not use recursion. # # # # More topmatter & documentation probably irrelevant to most: # # # # Inspiration: I viewed it an interesting problem, to try to do an animated # # construction of a Sierpinski Triangle in sage. Thought I'd be lazy & search # # the 'Net for open-source versions of this I could simply convert to sage, but # # the open-source code I found was poorly documented & I couldn't figure it # # out, so I gave up & solved the problem from scratch. # # # # Also, I wanted to animate the construction, which I did not find in # # open-source code on the 'Net. # # # # Comments on algorithm: # # # # The code I found on the 'Net was recursive. I do not much like recursion, # # considering it way for programmers to say, "Look how smart I am! I'm using # # recursion! Aren't I cool?!" I feel strongly recursion is often confusing, # # can chew up too much memory, and should be avoided except when # # # # a) It's unavoidable, or # # b) The code would be atrocious without it. # # # # Did some thinking & swearing, but concocted a non-recursive method, and by # # doing the problem from scratch. Guess it avoids all charges of copyright # # violation, plagiarism, whatever. # # # # More on algorithm via ASCII art. Below we have a given triangle, shaded via # # x's. # # # # The next "generation" is the blank triangles. Sit down & start a Sierpinski # # Triangle on scratch: the next generation is always two on each side of a # # given triangle from the last generation, one on top. Algorithm takes the # # given, shaded triangle (below), and makes the three of the next generation # # arising from it. # # # # See code for more on how this works. # # __________ # # \ / # # \ / # # \ / # # \ / # # _________\/_________ # # \ xxxxxxxxxxxxxxxx / # # \ xxxxxxxxxxxxxx / # # \ xxxxxxxxxxxx / # # \ xxxxxxxxxx / # # _________\ xxxxxxxx /_________ # # \ /\ xxxxxx /\ / # # \ / \ xxxx / \ / # # \ / \ xx / \ / # # \ / \ / \ / # # \/ \/ \/ # # # ################################################################################# # # # Begin program: # # # # First we need three functions; see the below code on how they are used. # # # # The three functions *right_side_triangle* , *left_side_triangle* & # # *top_triangle* are here defined & not as "lambda" functions, as they need # # documented. # # # # I don't care to replicate the poorly-documented code I found on the 'Net. # # # ################################################################################# # # # First function, *right_side_triangle*. # # # # Function *right_side_triangle* gives coordinates of next triangle on right # # side of a given triangle whose coordinates are passed in. # # # # Points *p*, *r*, *q*, *s* & *t* are labeled as passed in: # # # # (p, r)____________________(q, r) # # \ / # # \ / # # \ / # # \ / # # \ (p1, r1)/_________ (q1, r1) # # \ /\ / # # \ / \ / # # \ / \ / # # \ / \ / # # \/ \/ # # (s, t) (s1, t1) # # # # p1 = (q + s)/2, a simple average. # # q1 = q + (q - s)/2 = (3*q - s)/2 # # r1 = (r + t)/2, a simple average. # # s1 = q, easy. # # t1 = t, easy. # # # ################################################################################# def right_side_triangle(p,q,r,s,t): p1 = (q + s)/2 q1 = (3*q - s)/2 r1 = (r + t)/2 s1 = q # A placeholder, solely to make code clear. t1 = t # Ditto, a placeholder. return ((p1,r1),(q1, r1),(s1, t1)) # End of function *right_side_triangle*. ################################################################################# # # # Function *left_side_triangle*: # # # # (p, q) ____________________(q, r) # # \ / # # \ / # # \ / # # \ / # # (p1, r1) _________\ (q1, r1) / # # \ /\ / # # \ / \ / # # \ / \ / # # \ / \ / # # \/ \/ # # (s1, t1) (s, t) # # # # p1 = p - (s - p)/2 = (2p-s+p)/2 = (3p - s)/2 # # q1 = (p + s)/2, a simple average # # r1 = (r + t)/2, a simple average. # # s1 = p, easy. # # t1 = t, easy. # # # ################################################################################# def left_side_triangle(p,q,r,s,t): p1 = (3*p - s)/2 q1 = (p + s)/2 r1 = (r + t)/2 s1 = p # A placeholder, solely to make code clear. t1 = t # Ditto, a placeholder. return ((p1,r1),(q1, r1),(s1, t1)) # End of function *left_side_triangle*. ################################################################################# # # # Function *top_triangle*. # # # # (p1, r1) __________ (q1, r1) # # \ / # # \ / # # \ / # # \ / (s1, t1) # # (p, r)_________\/_________ # # \ xxxxxxxxxxxxxxxx / # # \ xxxxxxxxxxxxxx / (q, r) # # \ xxxxxxxxxxxx / # # \ xxxxxxxxxx / # # \ xxxxxxxx / # # \ xxxxxx / # # \ xxxx / # # \ xx / # # \ / # # \/ # # (s, t) # # # # p1 = (p + s)/2, a simple average. # # q1 = (s + q)/2, a simple average # # r1 = r + (r - t)/2 = (3r - t)/2 # # s1 = s, easy. # # t1 = r, easy. # # # ################################################################################# def top_triangle(p,q,r,s,t): p1 = (p + s)/2 q1 = (s + q)/2 r1 = (3*r - t)/2 s1 = s # Again, both this & next are t1 = r # placeholders, solely to make code clear. return ((p1,r1),(q1, r1),(s1, t1)) # End of function *top_triangle*. ################################################################################# # # # Main program commences: # # # ################################################################################# # Top matter a user may wish to vary: number_of_generations = 8 # How "deep" goes the animation after initial triangle. first_triangle_color = (1,0,0) # First triangle's rgb color as red-green-blue tuple. chopped_piece_color = (0,0,0) # Color of "chopped" pieces as rgb tuple. delay_between_frames = 50 # Time between "frames" of final "movie." figure_size = 12 # Regulates size of final image. initial_edge_length = 3^7 # Initial edge length. # End of material user may realistically vary. Rest should churn without user input. number_of_triangles_in_last_generation = 3^number_of_generations # Always a power of three. images = [] # Holds images of final "movie." coordinates = [] # Holds coordinates. p0 = (0,0) # Initial points to start iteration -- note p1 = (initial_edge_length, 0) # y-values of *p0* & *p1* are the same -- an p2 = ((p0[0] + p1[0])/2, # important book-keeping device. ((initial_edge_length/2)*sin(pi/3))) # Equilateral triangle; see any Internet # reference on these. # We make a polygon (triangle) of initial points: this_generations_image = polygon((p0, p1, p2), rgbcolor=first_triangle_color) images.append(this_generations_image) # Save image from last line. coordinates = [( ( (p0[0] + p2[0])/2, (p0[1] + p2[1])/2 ), # Coordinates ( (p1[0] + p2[0])/2, (p1[1] + p2[1])/2 ), # of second ( (p0[0] + p1[0])/2, (p0[1] + p1[1])/2 ) )] # triangle. # It is *supremely* important # that the y-values of the first two # points are equal -- check definitions # above & code below. this_generations_image = polygon(coordinates[0], # Image of second triangle. rgbcolor=chopped_piece_color) images.append(images[0] + this_generations_image) # Save second image, tacked on top of first.
# Now the loop that makes the images:
number_of_triangles_in_this_generation = 1 # We have made one "chopped" triangle, the second, above.
while number_of_triangles_in_this_generation < number_of_triangles_in_last_generation:
this_generations_image = Graphics() # Holds next generation's image, initialize.
next_generations_coordinates = [] # Holds next generation's coordinates, set to null.
for a,b,c in coordinates: # Loop on all triangles.
(p, r) = a # Right point; note y-value of this & next are equal.
(q, r1) = b # Left point; note r1 = r & thus *r1* is irrelevant;
# it's only there for book-keeping.
(s, t) = c # Bottom point.
# Now construct the three triangles & their three polygons of the next
# generation.
right_triangle = right_side_triangle(p,q,r,s,t) # Here use those
left_triangle = left_side_triangle (p,q,r,s,t) # utility functions
upper_triangle = top_triangle (p,q,r,s,t) # defined at top.
right = polygon(right_triangle, rgbcolor=(chopped_piece_color)) # Make next
left = polygon(left_triangle, rgbcolor=(chopped_piece_color)) # generation's
top = polygon(upper_triangle, rgbcolor=(chopped_piece_color)) # triangles.
this_generations_image = this_generations_image + (right + left + top) # Add image.
next_generations_coordinates.append(right_triangle) # Save the coordinates
next_generations_coordinates.append( left_triangle) # of triangles of the
next_generations_coordinates.append(upper_triangle) # next generation.
# End of "for a,b,c" loop.
coordinates = next_generations_coordinates # Save for next generation.
images.append(images[-1] + this_generations_image) # Make next image: all previous
# images plus latest on top.
number_of_triangles_in_this_generation *= 3 # Bump up.
# End of *while* loop.
a = animate(images, figsize=[figure_size, figure_size], axes=False) # Make image, ...
a.show(delay = delay_between_frames) # Show image.
# End of program.
End of code. |
| Data |
23 de março de 2008 (data de carregamento original) |
| Origem | Obra do próprio (Texto original: “self-made”) |
| Autor | (Texto original: “dino (talk)”) |
Licenciamento
Dino em Wikipédia em inglês, titular dos direitos de autor desta obra, publica-a com as seguintes licenças:
A utilização deste ficheiro é regulada nos termos da licença Creative Commons - Atribuição-CompartilhaIgual 3.0 Não Adaptada.
Atribuição:
- Pode:
- partilhar – copiar, distribuir e transmitir a obra
- recombinar – criar obras derivadas
- De acordo com as seguintes condições:
- atribuição – Tem de fazer a devida atribuição da autoria, fornecer uma hiperligação para a licença e indicar se foram feitas alterações. Pode fazê-lo de qualquer forma razoável, mas não de forma a sugerir que o licenciador o apoia ou subscreve o seu uso da obra.
- partilha nos termos da mesma licença – Se remisturar, transformar ou ampliar o conteúdo, tem de distribuir as suas contribuições com a mesma licença ou uma licença compatível com a original.
| É concedida permissão para copiar, distribuir e/ou modificar este documento nos termos da Licença de Documentação Livre GNU, versão 1.2 ou qualquer versão posterior publicada pela Free Software Foundation; sem Secções Invariantes, sem textos de Capa e sem textos de Contra-Capa. É incluída uma cópia da licença na secção intitulada GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Pode escolher a licença que quiser.
Registo de carregamento original
A página de descrição original está aqui. Todos os nomes de utilizador a seguir referem-se a en.wikipedia.
- 2008-03-23 18:33 Dino 1200×1200×7 (344780 bytes) {{Information |Description=Animated construction of Sierpinski Triangle |Source=self-made |Date=March 23, 2008 |Location=Boulder, Colorado |Author=~~~ |other_versions= }} Self-made. Will post source code later.
Legendas
Adicione uma explicação de uma linha do que este ficheiro representa
Animation construction the Sierpinski Triangle.
Elementos retratados neste ficheiro
retrata
23 março 2008
image/gif
5b78b6d9a0c951fd72acd22b4b236875f41679c2
384 183 byte
5 segundo
980 pixel
950 pixel
Histórico do ficheiro
Clique uma data e hora para ver o ficheiro tal como ele se encontrava nessa altura.
| Data e hora | Miniatura | Dimensões | Utilizador | Comentário | |
|---|---|---|---|---|---|
| atual | 03h41min de 10 de fevereiro de 2011 | 950 × 980 (375 kB) | wikimediacommons>Deanmoore | Seemingly better version |
Utilização local do ficheiro
A seguinte página usa este ficheiro: