Ficheiro:BMonSphere.jpg
Fonte: testwiki
Saltar para a navegação
Saltar para a pesquisa
BMonSphere.jpg (365 × 356 píxeis, tamanho: 10 kB, tipo MIME: image/jpeg)
Este ficheiro vem da wiki na wiki Wikimedia Commons e pode ser usado por outros projetos. A descrição na página original de descrição do ficheiro é mostrada abaixo.
| Esta imagem foi (ou todas as imagens neste artigo ou categoria foram) carregada no formato JPEG. No entanto, contém informação que pode ser armazenada de forma mais eficiente ou precisa no formato PNG ou no formato SVG. Se possível, por favor carregue uma versão PNG ou SVG desta imagem sem artefactos de compressão, derivada de uma fonte não-JPEG ou com os artefactos de compressão removidos. Depois de o fazer:
|
| DescriçãoBMonSphere.jpg | Brownian Motion on a Sphere. The generator of ths process is ½ times the Laplace-Beltrami-Operator |
| Data |
verão de 2007 date QS:P,+2007-00-00T00:00:00Z/9,P4241,Q40720564 (blender file as of 28.06.2007) |
| Origem | read some papers (eg Price, Gareth C.; Williams, David: "Rolling with “slipping”" : I. Séminaire de probabilités de Strasbourg, 17 (1983), p. 194-197 You can download it from http://www.numdam.org/item?id=SPS_1983__17__194_0) use the GNU R code and the python code (in blender3d) to create this image. |
| Autor | Thomas Steiner |
| Permissão (Reutilizar este ficheiro) |
Thomas Steiner put it under the CC-by-SA 2.5. If you use the python code or the R code, please give a reference to Christian Bayer and Thomas Steiner. |
A utilização deste ficheiro é regulada nos termos da licença Creative Commons - Atribuição-CompartilhaIgual 2.5 Genérica.
- Pode:
- partilhar – copiar, distribuir e transmitir a obra
- recombinar – criar obras derivadas
- De acordo com as seguintes condições:
- atribuição – Tem de fazer a devida atribuição da autoria, fornecer uma hiperligação para a licença e indicar se foram feitas alterações. Pode fazê-lo de qualquer forma razoável, mas não de forma a sugerir que o licenciador o apoia ou subscreve o seu uso da obra.
- partilha nos termos da mesma licença – Se remisturar, transformar ou ampliar o conteúdo, tem de distribuir as suas contribuições com a mesma licença ou uma licença compatível com a original.
code
Perhaps you grab the source from the "edit" page without the wikiformating.
GNU R
This creates the paths and saves them into textfiles that can be read by blender. There are also paths for BMs on a torus.
# calculate a Brownian motion on the sphere; the output is a list
# consisting of:
# Z ... BM on the sphere
# Y ... tangential BM, see Price&Williams
# b ... independent 1D BM (see Price & Williams)
# B ... generating 3D BM
# n ... number of time-steps in the discretization
# T ... the above processes are given on a uniform mesh of size
# n on [0,T]
euler = function(x0, T, n) {
# initialize objects
dt = T/(n-1);
dB = matrix(rep(0,3*(n-1)),ncol=3, nrow=n-1);
dB[,1] = rnorm(n-1, 0, sqrt(dt));
dB[,2] = rnorm(n-1, 0, sqrt(dt));
dB[,3] = rnorm(n-1, 0, sqrt(dt));
Z = matrix(rep(0,3*n), ncol=3, nrow=n);
dZ = matrix(rep(0,3*(n-1)), ncol=3, nrow=n-1);
Y = matrix(rep(0,3*n), ncol=3, nrow=n);
B = matrix(rep(0,3*n), ncol=3, nrow=n);
b = rep(0, n);
Z[1,] = x0;
#do the computation
for(k in 2:n){
B[k,] = B[k-1,] + dB[k-1,];
dZ[k-1,] = cross(Z[k-1,],dB[k-1,]) - Z[k-1,]*dt;
Z[k,] = Z[k-1,] + dZ[k-1,];
Y[k,] = Y[k-1,] - cross(Z[k-1,],dZ[k-1,]);
b[k] = b[k-1] + dot(Z[k-1,],dB[k-1,]);
}
return(list(Z = Z, Y = Y, b = b, B = B, n = n, T = T));
}
# write the output from euler in csv-files
euler.write = function(bms, files=c("Z.csv","Y.csv","b.csv","B.csv"),steps=bms$n){
bigsteps=round(seq(1,bms$n,length=steps))
write.table(bms$Z[bigsteps,],file=files[1],col.names=F,row.names=F,sep=",",dec=".");
write.table(bms$Y[bigsteps,],file=files[2],col.names=F,row.names=F,sep=",",dec=".");
write.table(bms$b[bigsteps],file=files[3],col.names=F,row.names=F,sep=",",dec=".");
write.table(bms$B[bigsteps,],file=files[4],col.names=F,row.names=F,sep=",",dec=".");
}
# calculate a Brownian motion on a 3-d torus with outer
# radius R and inner radius r
eulerTorus = function(x0, r, R, t, n) {
# initialize objects
dt = t/(n-1);
dB = matrix(rep(0,3*(n-1)),ncol=3, nrow=n-1);
dB[,1] = rnorm(n-1, 0, sqrt(dt));
dB[,2] = rnorm(n-1, 0, sqrt(dt));
dB[,3] = rnorm(n-1, 0, sqrt(dt));
Z = matrix(rep(0,3*n), ncol=3, nrow=n);
B = matrix(rep(0,3*n), ncol=3, nrow=n);
dZ = matrix(rep(0,3*(n-1)), ncol=3, nrow=n-1);
Z[1,] = x0;
nT = rep(0,3);
#do the computation
for(k in 2:n){
B[k,] = B[k-1,] + dB[k-1,];
nT = nTorus(Z[k-1,],r,R);
dZ[k-1,] = cross(nT, dB[k-1,]) + HTorus(Z[k-1,],r,R)*nT*dt;
Z[k,] = Z[k-1,] + dZ[k-1,];
}
return(list(Z = Z, B = B, n = n, t = t));
}
# write the output from euler in csv-files
torus.write = function(bmt, files=c("tZ.csv","tB.csv"),steps=bmt$n){
bigsteps=round(seq(1,bmt$n,length=steps))
write.table(bmt$Z[bigsteps,],file=files[1],col.names=F,row.names=F,sep=",",dec=".");
write.table(bmt$B[bigsteps,],file=files[2],col.names=F,row.names=F,sep=",",dec=".");
}
# "defining" function of a torus
fTorus = function(x,r,R){
return((x[1]^2+x[2]^2+x[3]^2+R^2-r^2)^2 - 4*R^2*(x[1]^2+x[2]^2));
}
# normal vector of a 3-d torus with outer radius R and inner radius r
nTorus = function(x, r, R) {
c1 = x[1]*(x[1]^2+x[2]^2+x[3]^2-R^2-r^2)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2
+3*x[3]^4*x[1]^2+6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4
-2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6+x[3]^6+3*x[3]^2*x[1]^4
-4*x[1]^2*x[2]^2*r^2-4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2
-4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2-2*x[1]^4*r^2
+R^4*x[1]^2+x[1]^2*r^4-2*x[2]^4*R^2-2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4
+x[3]^2*R^4+x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(1/2);
c2 = x[2]*(x[1]^2+x[2]^2+x[3]^2-R^2-r^2)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2
+3*x[3]^4*x[1]^2+6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4
-2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6+x[3]^6
+3*x[3]^2*x[1]^4-4*x[1]^2*x[2]^2*r^2-4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2
-4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2-2*x[1]^4*r^2+R^4*x[1]^2
+x[1]^2*r^4-2*x[2]^4*R^2-2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4+x[3]^2*R^4
+x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(1/2);
c3 = (x[1]^2+x[2]^2+x[3]^2+R^2-r^2)*x[3]/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2
+3*x[3]^4*x[1]^2
+6*x[3]^2*x[1]^2*x[2]^2
+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4
-2*x[3]^2*R^2*r^2
-4*x[1]^2*x[2]^2*R^2+x[1]^6
+x[2]^6+x[3]^6+3*x[3]^2*x[1]^4
-4*x[1]^2*x[2]^2*r^2
-4*x[1]^2*x[3]^2*r^2
+2*R^2*x[1]^2*r^2
-4*x[2]^2*x[3]^2*r^2
+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2
-2*x[1]^4*r^2+R^4*x[1]^2
+x[1]^2*r^4-2*x[2]^4*R^2
-2*x[2]^4*r^2+R^4*x[2]^2
+x[2]^2*r^4+x[3]^2*R^4
+x[3]^2*r^4-2*x[3]^4*r^2
+2*x[3]^4*R^2)^(1/2);
return(c(c1,c2,c3));
}
# mean curvature of a 3-d torus with outer radius R and inner radius r
HTorus = function(x, r, R){
return( -(3*x[1]^4*r^4+4*x[2]^6*x[3]^2+4*x[1]^6*x[2]^2-3*x[2]^4*x[3]^2*R^2
-2*x[1]^6*R^2+4*x[1]^2*x[3]^6+x[3]^6*R^2+4*x[2]^4*R^2*r^2-x[1]^2*r^6
-x[2]^2*r^6+x[2]^4*R^4+4*x[2]^2*x[3]^2*R^4+6*x[2]^2*x[3]^2*r^4
-2*x[1]^2*R^2*r^4-x[1]^2*R^4*r^2-9*x[1]^4*x[2]^2*r^2
-9*x[1]^4*x[3]^2*r^2+4*x[1]^4*R^2*r^2+12*x[1]^2*x[3]^4*x[2]^2
-3*x[2]^6*r^2+4*x[1]^6*x[3]^2+3*x[3]^4*r^4-x[3]^4*R^4
-9*x[2]^4*x[3]^2*r^2+2*x[2]^2*x[3]^2*R^2*r^2+4*x[1]^2*x[2]^6
-6*x[1]^2*x[3]^2*x[2]^2*R^2-x[3]^2*r^6+6*x[2]^4*x[3]^4+x[3]^8
+x[1]^8+x[2]^8-3*x[1]^6*r^2+6*x[1]^4*x[3]^4+12*x[1]^2*x[3]^2*x[2]^4
-6*x[1]^2*x[2]^4*R^2-2*x[3]^4*R^2*r^2-2*x[2]^2*R^2*r^4-x[2]^2*R^4*r^2
-9*x[2]^2*x[3]^4*r^2+x[3]^2*R^2*r^4+x[3]^2*R^4*r^2-9*x[1]^2*x[2]^4*r^2
+2*x[1]^2*R^4*x[2]^2+6*x[1]^2*x[2]^2*r^4-3*x[1]^4*x[3]^2*R^2
-6*x[1]^4*x[2]^2*R^2+4*x[1]^2*x[3]^2*R^4+6*x[1]^2*x[3]^2*r^4
-9*x[1]^2*x[3]^4*r^2+8*x[1]^2*R^2*x[2]^2*r^2+2*x[1]^2*x[3]^2*R^2*r^2
+x[1]^4*R^4-3*x[3]^6*r^2-2*x[2]^6*R^2+6*x[1]^4*x[2]^4-x[3]^2*R^6
-18*x[1]^2*x[2]^2*x[3]^2*r^2+4*x[2]^2*x[3]^6+12*x[1]^4*x[3]^2*x[2]^2
+3*x[2]^4*r^4)/(3*x[1]^4*x[2]^2+3*x[3]^4*x[2]^2+3*x[3]^4*x[1]^2
+6*x[3]^2*x[1]^2*x[2]^2+3*x[1]^2*x[2]^4+3*x[3]^2*x[2]^4
-2*x[3]^2*R^2*r^2-4*x[1]^2*x[2]^2*R^2+x[1]^6+x[2]^6
+x[3]^6+3*x[3]^2*x[1]^4-4*x[1]^2*x[2]^2*r^2
-4*x[1]^2*x[3]^2*r^2+2*R^2*x[1]^2*r^2
-4*x[2]^2*x[3]^2*r^2+2*R^2*x[2]^2*r^2-2*x[1]^4*R^2
-2*x[1]^4*r^2+R^4*x[1]^2+x[1]^2*r^4-2*x[2]^4*R^2
-2*x[2]^4*r^2+R^4*x[2]^2+x[2]^2*r^4+x[3]^2*R^4
+x[3]^2*r^4-2*x[3]^4*r^2+2*x[3]^4*R^2)^(3/2));
}
# calculate the cross product of the two 3-dim vectors
# x and y. No argument-checking for performance reasons
cross = function(x,y){
res = rep(0,3);
res[1] = x[2]*y[3] - x[3]*y[2];
res[2] = -x[1]*y[3] + x[3]*y[1];
res[3] = x[1]*y[2] - x[2]*y[1];
return(res);
}
# calculate the inner product of two vectors of dim 3
# returns a number, not a 1x1-matrix!
dot = function(x,y){
return(sum(x*y));
}
# calculate the cross product of the two 3-dim vectors
# x and y. No argument-checking for performance reasons
cross = function(x,y){
res = rep(0,3);
res[1] = x[2]*y[3] - x[3]*y[2];
res[2] = -x[1]*y[3] + x[3]*y[1];
res[3] = x[1]*y[2] - x[2]*y[1];
return(res);
}
#############
### main-teil
set.seed(280180)
et=eulerTorus(c(3,0,0),3,5,19,10000)
torus.write(et,steps=9000)
#
#bms=euler(c(1,0,0),4,70000)
#euler.write(bms,steps=10000)
blender3d
The blender (python) code to create a image that looks almost like this one. Play around...
## import data from matlab-text-file and draw BM on the S^2
## (c) 2007 by Christan Bayer and Thomas Steiner
from Blender import Curve, Object, Scene, Window, BezTriple, Mesh, Material, Camera,
World
from math import *
##import der BM auf der Kugel aus einem csv-file
def importcurve(inpath="Z.csv"):
infile = open(inpath,'r')
lines = infile.readlines()
vec=[]
for i in lines:
li=i.split(',')
vec.append([float(li[0]),float(li[1]),float(li[2].strip())])
infile.close()
return(vec)
##function um aus einem vektor (mit den x,y,z Koordinaten) eine Kurve zu machen
def vec2Cur(curPts,name="BMonSphere"):
bztr=[]
bztr.append(BezTriple.New(curPts[0]))
bztr[0].handleTypes=(BezTriple.HandleTypes.VECT,BezTriple.HandleTypes.VECT)
cur=Curve.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen
cur.appendNurb(bztr[0])
for i in range(1,len(curPts)):
bztr.append(BezTriple.New(curPts[i]))
bztr[i].handleTypes=(BezTriple.HandleTypes.VECT,BezTriple.HandleTypes.VECT)
cur[0].append(bztr[i])
return( cur )
#erzeugt einen kreis, der später die BM umgibt (liegt in y-z-Ebene)
def circle(r,name="tubus"):
bzcir=[]
bzcir.append(BezTriple.New(0.,-r,-4./3.*r, 0.,-r,0., 0.,-r,4./3.*r))
bzcir[0].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE)
cur=Curve.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen
cur.appendNurb(bzcir[0])
#jetzt alle weietren pkte
bzcir.append(BezTriple.New(0.,r,4./3.*r, 0.,r,0., 0.,r,-4./3.*r))
bzcir[1].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE)
cur[0].append(bzcir[1])
bzcir.append(BezTriple.New(0.,-r,-4./3.*r, 0.,-r,0., 0.,-r,4./3.*r))
bzcir[2].handleTypes=(BezTriple.HandleTypes.FREE,BezTriple.HandleTypes.FREE)
cur[0].append(bzcir[2])
return ( cur )
#erzeuge mit skript eine (glas)kugel (UVSphere)
def sphGlass(r=1.0,name="Glaskugel",n=40,smooth=0):
glass=Mesh.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen
for i in range(0,n):
for j in range(0,n):
x=sin(j*pi*2.0/(n-1))*cos(-pi/2.0+i*pi/(n-1))*1.0*r
y=cos(j*pi*2.0/(n-1))*(cos(-pi/2.0+i*pi/(n-1)))*1.0*r
z=sin(-pi/2.0+i*pi/(n-1))*1.0*r
glass.verts.extend(x,y,z)
for i in range(0,n-1):
for j in range(0,n-1):
glass.faces.extend([i*n+j,i*n+j+1,(i+1)*n+j+1,(i+1)*n+j])
glass.faces[i*(n-1)+j].smooth=1
return( glass )
def torus(r=0.3,R=1.4):
krGro=circle(r=R,name="grTorusKreis")
#jetzt das material ändern
def verglasen(mesh):
matGlass = Material.New("glas") ##TODO wenn es das Objekt schon gibt, dann nicht
neu erzeugen
#matGlass.setSpecShader(0.6)
matGlass.setHardness(30) #für spec: 30
matGlass.setRayMirr(0.15)
matGlass.setFresnelMirr(4.9)
matGlass.setFresnelMirrFac(1.8)
matGlass.setIOR(1.52)
matGlass.setFresnelTrans(3.9)
matGlass.setSpecTransp(2.7)
#glass.materials.setSpecTransp(1.0)
matGlass.rgbCol = [0.66, 0.81, 0.85]
matGlass.mode |= Material.Modes.ZTRANSP
matGlass.mode |= Material.Modes.RAYTRANSP
#matGlass.mode |= Material.Modes.RAYMIRROR
mesh.materials=[matGlass]
return ( mesh )
def maleBM(mesh):
matDraht = Material.New("roterDraht") ##TODO wenn es das Objekt schon gibt, dann
nicht neu erzeugen
matDraht.rgbCol = [1.0, 0.1, 0.1]
mesh.materials=[matDraht]
return( mesh )
#eine solide Mesh-Ebene (Quader)
# auf der höhe ebh, dicke d, seitenlänge (quadratisch) 2*gr
def ebene(ebh=-2.5,d=0.1,gr=6.0,name="Schattenebene"):
quader=Mesh.New(name) ##TODO wenn es das Objekt schon gibt, dann nicht neu erzeugen
#obere ebene
quader.verts.extend(gr,gr,ebh)
quader.verts.extend(-gr,gr,ebh)
quader.verts.extend(-gr,-gr,ebh)
quader.verts.extend(gr,-gr,ebh)
#untere ebene
quader.verts.extend(gr,gr,ebh-d)
quader.verts.extend(-gr,gr,ebh-d)
quader.verts.extend(-gr,-gr,ebh-d)
quader.verts.extend(gr,-gr,ebh-d)
quader.faces.extend([0,1,2,3])
quader.faces.extend([0,4,5,1])
quader.faces.extend([1,5,6,2])
quader.faces.extend([2,6,7,3])
quader.faces.extend([3,7,4,0])
quader.faces.extend([4,7,6,5])
#die ebene einfärben
matEb = Material.New("ebenen_material") ##TODO wenn es das Objekt schon gibt, dann
nicht neu erzeugen
matEb.rgbCol = [0.53, 0.51, 0.31]
matEb.mode |= Material.Modes.TRANSPSHADOW
matEb.mode |= Material.Modes.ZTRANSP
quader.materials=[matEb]
return (quader)
###################
#### main-teil ####
# wechsel in den edit-mode
editmode = Window.EditMode()
if editmode: Window.EditMode(0)
dataBMS=importcurve("C:/Dokumente und Einstellungen/thire/Desktop/bmsphere/Z.csv")
#dataBMS=importcurve("H:\MyDocs\sphere\Z.csv")
BMScur=vec2Cur(dataBMS,"BMname")
#dataStereo=importcurve("H:\MyDocs\sphere\stZ.csv")
#stereoCur=vec2Cur(dataStereo,"SterName")
cir=circle(r=0.01)
glass=sphGlass()
glass=verglasen(glass)
ebe=ebene()
#jetzt alles hinzufügen
scn=Scene.GetCurrent()
obBMScur=scn.objects.new(BMScur,"BMonSphere")
obcir=scn.objects.new(cir,"round")
obgla=scn.objects.new(glass,"Glaskugel")
obebe=scn.objects.new(ebe,"Ebene")
#obStereo=scn.objects.new(stereoCur,"StereoCurObj")
BMScur.setBevOb(obcir)
BMScur.update()
BMScur=maleBM(BMScur)
#stereoCur.setBevOb(obcir)
#stereoCur.update()
cam = Object.Get("Camera")
#cam.setLocation(-5., 5.5, 2.9)
#cam.setEuler(62.0,-1.,222.6)
#alternativ, besser??
cam.setLocation(-3.3, 8.4, 1.7)
cam.setEuler(74,0,200)
world=World.GetCurrent()
world.setZen([0.81,0.82,0.61])
world.setHor([0.77,0.85,0.66])
if editmode: Window.EditMode(1) # optional, zurück n den letzten modus
#ergebnis von
#set.seed(24112000)
#sbm=euler(c(0,0,-1),T=1.5,n=5000)
#euler.write(sbm)
Legendas
Adicione uma explicação de uma linha do que este ficheiro representa
Brownian Motion on a Sphere, as a process generated by the Laplace-Beltrami-Operator
Броуновское движение на сфере Генератор этого процесса в ½ раза превышает оператор Лапласа-Бельтрами.
Elementos retratados neste ficheiro
retrata
image/jpeg
f51c8d9194ca77a5c2a7d77d21c292e592d5c6c5
10 693 byte
356 pixel
365 pixel
Histórico do ficheiro
Clique uma data e hora para ver o ficheiro tal como ele se encontrava nessa altura.
| Data e hora | Miniatura | Dimensões | Utilizador | Comentário | |
|---|---|---|---|---|---|
| atual | 20h53min de 22 de dezembro de 2013 | 365 × 356 (10 kB) | wikimediacommons>Olli Niemitalo | Cropped (in a JPEG-lossless way) |
Utilização local do ficheiro
As seguintes 2 páginas usam este ficheiro:

