Ficheiro:Osculating circles of the Archimedean spiral.svg
Fonte: testwiki
Saltar para a navegação
Saltar para a pesquisa
Dimensões desta antevisão em PNG do ficheiro SVG: 600 × 600 píxeis Outras resoluções: 240 × 240 píxeis | 480 × 480 píxeis | 768 × 768 píxeis | 1 024 × 1 024 píxeis | 2 048 × 2 048 píxeis | 1 000 × 1 000 píxeis.
Ficheiro original (ficheiro SVG, de 1 000 × 1 000 píxeis, tamanho: 108 kB)
Este ficheiro vem da wiki na wiki Wikimedia Commons e pode ser usado por outros projetos. A descrição na página original de descrição do ficheiro é mostrada abaixo.
Descrição do ficheiro
| DescriçãoOsculating circles of the Archimedean spiral.svg |
English: Osculating circles of the Archimedean spiral. "The spiral itself is not not drawn: we see it as the locus of points where the circles are especially close to each other." [1] |
| Data | |
| Origem | Obra do próprio |
| Autor | Adam majewski |
| Outras versões |
|
| SVG desenvolvimento InfoField |
Descrição do ficheiro
Math equations
Point of an Archimedean spiral for angle t
The curvature of Archimedes' spiral is
Radius of osculating circle is[2]
Center of osculating circle is
where
is first derivative
is a second derivative
notes
Program computes 130 values of angle ( list tt) from 1/5 to 26:
[1/5,2/5,3/5,4/5,1,6/5,7/5,8/5,9/5,2,11/5,12/5,13/5,14/5,3,16/5,17/5,18/5,19/5,4,21/5,22/5,23/5,24/5,5,26/5,27/5,28/5,29/5,6,31/5,32/5,
33/5,34/5,7,36/5,37/5,38/5,39/5,8,41/5,42/5,43/5,44/5,9,46/5,47/5,48/5,49/5,10,51/5,52/5,53/5,54/5,11,56/5,57/5,58/5,59/5,12,61/5,62/5,
63/5,64/5,13,66/5,67/5,68/5,69/5,14,71/5,72/5,73/5,74/5,15,76/5,77/5,78/5,79/5,16,81/5,82/5,83/5,84/5,17,86/5,87/5,88/5,89/5,18,91/5,92/5,
93/5,94/5,19,96/5,97/5,98/5,99/5,20,101/5,102/5,103/5,104/5,21,106/5,107/5,108/5,109/5,22,111/5,112/5,113/5,114/5,23,116/5,117/5,118/5,
119/5,24,121/5,122/5,123/5,124/5,25,126/5,127/5,128/5,129/5,26]
For each angle t computes circle ( list for draw2d). It gives a new list Circles
Circles : map (GiveCircle, tt)$
Command draw2d takes list Circles and draw all circles. Commands from draw package accepts list as an input.
Algorithm
- compute a list of angles
- For each angle t from list tt compute a point
- for each point
compute and draw osculating circle
Maxima CAS src code
/*
http://mathworld.wolfram.com/OsculatingCircle.html
The osculating circle of a curve C at a given point P
is the circle that has the same tangent as C at point P as well as the same curvature.
https://en.wikipedia.org/wiki/Archimedean_spiral
https://www.mathcurve.com/courbes2d.gb/archimede/archimede.shtml
https://www.mathcurve.com/courbes2d.gb/enveloppe/enveloppe.shtml
the osculating circles of an Archimedean spiral. There is no need to trace the envelope...
http://xahlee.info/SpecialPlaneCurves_dir/ArchimedeanSpiral_dir/archimedeanSpiral.html
The tangent circles of Archimedes's spiral are all nested. need to proof that archimedes spiral's osculating circles are nested inside each other.
https://arxiv.org/abs/math/0602317
https://www.researchgate.net/publication/236899971_Osculating_Curves_Around_the_Tait-Kneser_Theorem
Osculating Curves: Around the Tait-Kneser Theorem
March 2013The Mathematical Intelligencer 35(1):61-66
DOI: 10.1007/s00283-012-9336-6
Elody GhysElody GhysSerge TabachnikovSerge TabachnikovVladlen TimorinVladlen Timorin
Osculating circles of a spiral. The spiral itself is not not drawn:
we see it as the locus of points where the circles are especially close to each
other.
https://math.stackexchange.com/questions/568752/curvature-of-the-archimedean-spiral-in-polar-coordinates
===============
Batch file for Maxima CAS
save as a a.mac
run maxima :
maxima
and then :
batch("a.mac");
*/
kill(all);
remvalue(all);
ratprint:false;
/* ---------- functions ---------------------------------------------------- */
/*
converts complex number z = x*y*%i
to the list in a draw format:
[x,y]
*/
draw_f(z):=[float(realpart(z)), float(imagpart(z))]$
/* give Draw List from one point*/
dl(z):=points([draw_f(z)])$
ToPoints(myList):= points(map(draw_f , myList))$
f(t):= t*cos(t)$
g(t) :=t*sin(t)$
define(fp(t), diff(f(t),t,1));
define(fpp(t), diff(f(t),t,2));
define(gp(t), diff(g(t),t,1));
define(gpp(t), diff(g(t),t,2));
/*
point of the Archimedean spiral
t is angle in turns
1 turn = 360 degree = 2*Pi radians
*/
give_spiral_point(t):= f(t)+ %i*g(t)$
/* The curvature of Archimedes' spiral is
http://mathworld.wolfram.com/ArchimedesSpiral.html
*/
GiveCurvature(t) := (2+t*t)/sqrt((1+t*t)*(1+t*t)*(1+t*t)) $
GiveRadius(t):= float(1/GiveCurvature(t));
/*
center of The osculating circle of a curve C at a given point P = give_spiral_point(t)
*/
GiveCenter(T):= block(
[x, y,f_, f_p, f_pp, g_, g_p, g_pp, n, d ],
f_ : f(T),
f_p : fp(T),
f_pp : fpp(T),
g_ : g(T),
g_p : gp(T),
g_pp : gpp(T),
n : f_p*f_p + g_p*g_p,
d : f_p*g_pp - f_pp*g_p,
x: f_ - g_p*n/d,
y: g_ + f_p* n/d,
return ( x+y*%i)
)$
GiveCircle(T):= block(
[Center, Radius],
Center : GiveCenter(T),
Radius : GiveRadius(T),
return(ellipse (float(realpart(Center)), float(imagpart(Center)), Radius, Radius, 0, 360))
)$
/* compute */
iMin:1;
iMax:130;
id:5;
tt: makelist(i/id, i, iMin, iMax)$
zz: map(give_spiral_point, tt)$ /* points of the spiral */
Circles : map (GiveCircle, tt)$
/* convert lists to draw format */
points: ToPoints(zz )$
/* draw lists using draw package */
path:"~/maxima/batch/spiral/ARCHIMEDEAN_SPIRAL/a2/"$ /* pwd, if empty then file is in a home dir , path should end with "/" */
/* draw it using draw package by */
load(draw);
/* if graphic file is empty (= 0 bytes) then run draw2d command again */
draw2d(
user_preamble="set key top right; unset mouse",
terminal = 'svg,
file_name = sconcat(path,"spiral_rc13_", string(iMin),"_", string(iMax)),
font_size = 13,
font = "Liberation Sans", /* https://commons.wikimedia.org/wiki/Help:SVG#Font_substitution_and_fallback_fonts */
title= "Osculating circles of the Archimedean spiral.\ The spiral itself is not not drawn: we see it as the locus of points where the circles are especially close to each other.",
dimensions = [1000, 1000],
/* points of the spiral, if you want to check
point_type = filled_circle,
point_size = 1,
points_joined = true,
points,*/
/* circles */
key = "",
line_width = 1,
line_type = solid,
border = true,
nticks = 100,
color = red,
fill_color = white,
transparent = true,
Circles
)$
Licenciamento
Eu, titular dos direitos de autor desta obra, publico-a com a seguinte licença:
A utilização deste ficheiro é regulada nos termos da licença Creative Commons Atribuição-CompartilhaIgual 4.0 Internacional.
- Pode:
- partilhar – copiar, distribuir e transmitir a obra
- recombinar – criar obras derivadas
- De acordo com as seguintes condições:
- atribuição – Tem de fazer a devida atribuição da autoria, fornecer uma hiperligação para a licença e indicar se foram feitas alterações. Pode fazê-lo de qualquer forma razoável, mas não de forma a sugerir que o licenciador o apoia ou subscreve o seu uso da obra.
- partilha nos termos da mesma licença – Se remisturar, transformar ou ampliar o conteúdo, tem de distribuir as suas contribuições com a mesma licença ou uma licença compatível com a original.
see also
references
- ↑ Osculating curves: around the Tait-Kneser Theoremby E. Ghys, S. Tabachnikov, V. Timorin
- ↑ mathworld.wolfram : OsculatingCircle
Legendas
Adicione uma explicação de uma linha do que este ficheiro representa
Osculating circles of the Archimedean spiral
Elementos retratados neste ficheiro
retrata
Um valor sem um elemento no repositório Wikidata
27 maio 2019
image/svg+xml
Histórico do ficheiro
Clique uma data e hora para ver o ficheiro tal como ele se encontrava nessa altura.
| Data e hora | Miniatura | Dimensões | Utilizador | Comentário | |
|---|---|---|---|---|---|
| atual | 22h23min de 23 de fevereiro de 2023 | 1 000 × 1 000 (108 kB) | wikimediacommons>Mrmw |
Utilização local do ficheiro
A seguinte página usa este ficheiro: