Implicação material (regra de inferência)

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Na lógica proposicional, implicação material [1][2] é uma regra de substituição válida que permite que uma sentença condicional seja substituída por uma disjunção em que o antecedente é negado. A regra determina que P implica Q é logicamente equivalente à não-P ou Q e pode substituir o outro em provas lógicas.

PQ¬PQ

Onde ""é um símbolo metalógico que representa "pode ser substituído em uma prova."

Notação Formal

A regra da implicação material pode ser escrita em notação de sequente:

(PQ)(¬PQ)

onde é um símbolo metalógico significando que (¬PQ) é uma consequência lógica de (PQ) em alguns sistemas lógicos;

ou na regra de inferência:

PQ¬PQ

onde a regra é que, sempre que uma instância de "(PQ)"é exibida em uma linha de uma prova, ela pode ser substituída por "¬PQ";

ou como a afirmação de uma verdade-funcional, tautologia ou teorema da lógica proposicional:

(PQ)(¬PQ)

Exemplo

Um exemplo é:

Se ele é um urso (P), então ele pode nadar (Q).
Assim, ele não é um urso ou ele pode nadar.


Se for descoberto que o urso não podia nadar, escrito simbolicamente como P¬Q, ambas as sentenças são falsas, mas caso contrário, elas são ambas verdadeiras.

References

Predefinição:Reflist