K-corte mínimo
Em matemática, o k-corte mínimo é o problema de otimização combinatória que requer encontrar um conjunto de arestas cuja remoção dessas arestas iria particionar o grafo em k componentes conexos. Essas arestas são chamadas de k-corte. O objetivo é encontrar o k-corte de peso mínimo. Esse particionamento pode ter aplicações em design VLSI, mineração de dados, elementos finitos e comunicação em computação paralela.
Definição formal
Dado um grafo não direcionado G = (V, E) com atribuição de pesos nas arestas w: E → N e um inteiro k ∈ {2, 3, …, |V|}, particione V em k conjuntos disjuntos F = {C1, C2, …, Ck} enquanto minimizando
Para um k fixo, esse problema é solúvel em tempo polinomial de O(|V|k2).[1] No entanto, o problema é NP-completo se k for parte da entrada.[2] Também é NP-completo se especificarmos vértices e pedirmos para o k-corte mínimo que separa esses vértices entre cada um dos conjuntos.[3]
Ver também
Notes
- ↑ Predefinição:Harvnb.
- ↑ Predefinição:Harvnb
- ↑ [1], which cites [2]