Momento de inércia de área

Fonte: testwiki
Revisão em 00h35min de 11 de dezembro de 2024 por imported>Py4nf (O texto está redigido em português brasileiro.)
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa

Predefinição:Reciclagem Predefinição:Mais notas O momento de inércia de área, também chamado de segundo momento de área ou segundo momento de inércia, é uma propriedade geométrica da seção transversal de elementos estruturais. Fisicamente o segundo momento de inércia está relacionado com as tensões e deformações que aparecem por flexão em um elemento estrutural e, portanto, junto com as propriedades do material determina a rigidez de um elemento estrutural sob flexão. Basicamente os associamos a forças aplicadas na área que variam linearmente com a distância, invertendo sua direção em dado eixo.[1]

Definição

Na imagem, temos representado o plano cartesiano e o diferencial de área dA (pequena porção da área total). Note que a distância do eixo x ao diferencial de área é y e vice-versa.

Definimos matematicamente o momento de inércia de área pela integral do produto dos elementos de área de uma figura plana pelo quadrado de suas distâncias a um eixo, ou seja, dividimos a área em questão em partes pequenas e fazemos um somatório dessas áreas multiplicadas pelo quadrado de suas distâncias ao eixo em questão.[1]

Ix=y2dA

Iy=x2dA

Normalmente aparece nas tabelas de seções em mm4 ou cm4.

Por depender do quadrado das distâncias ao eixo é um valor sempre positivo, e depende da distância e da direção do eixo em relação à figura. Pode lembrar o momento de inércia de massa, mas aqui o significado físico é bem diferente, essa é uma confusão comum, uma vez que existem vários conceitos diferentes que chamamos momento.

O momento de inércia de área da seção transversal de uma viga, em relação a um eixo que passe pelo seu centro de gravidade, mede a sua rigidez, ou seja a sua resistência à flexão em relação a esse eixo.

Por exemplo, aplicando a fórmula acima para uma seção retangular de lados a  e b , com o eixo passando pelo seu centro, e paralelo ao lado a  temos:

I=a2a2(b2b2y2.dy)dx =a.b312

Aumentar o lado b  da seção da viga, devido ao expoente cúbico, resulta num aumento bem maior de I  comparado com aumentar o lado a . Dobrar uma tábua em relação à sua espessura é fácil, mas não em relação à sua largura.

A deformação elástica deve ser proporcional à tensão aplicada. Quando uma viga é fletida, aumenta seu comprimento no lado convexo, enquanto diminui o de seu lado côncavo. Proporcionalmente a essas alterações, existem tensões de tração onde o comprimento aumenta e de compressão onde ele diminui. Uma fibra situada no centro da viga permanece com o mesmo comprimento, portanto não há tensão nessa região. À medida que aumenta a distância em relação ao centro, também aumenta a diferença entre o comprimento original (o mesmo da região central) e o atual, sob carga. O esforço de dobramento chama-se momento fletor (M ). Para determinar as tensões usa-se o momento de inércia de área:

σ=M.rI

Para r  em milímetros, o momento de inércia em mm4 , e o momento fletor em kgf.mm , a tensão será calculada em kgfmm2 .

A tensão é máxima na fibra mais afastada do centro, onde r , a distância ao centro também é máxima. Será um valor positivo (tração) no lado convexo e negativo (compressão) no lado côncavo. A tensão de tração particularmente é crítica, pois deve estar abaixo do limite de resistência do material para evitar seu rompimento. Percebe-se pela fórmula que a chave para diminuir as tensões nas vigas é aumentar seu momento de inércia de área.

Ver também

Predefinição:Referências

  1. 1,0 1,1 Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome rocha