Hipersuperfície

Fonte: testwiki
Revisão em 20h19min de 5 de agosto de 2021 por imported>Tuga1143 (Página marcada como sem fontes)
(dif) ← Revisão anterior | Revisão atual (dif) | Revisão seguinte → (dif)
Saltar para a navegação Saltar para a pesquisa

Predefinição:Sem fontes Em matemática, uma hipersuperfície é uma variedade n-dimensional com n > 2, quer dizer, um objecto topológico que generaliza a uma superfície dimensional. Tecnicamente uma hipersuperfície é um espaço topológico que é localmente homeomorfo ao espaço euclidiano n.

Isto significa que para cada ponto P de uma superfície existe uma vizinhança de P (uma pequena região que a rodeia) que é homeomorfa a um disco aberto de n. Isto permite definir uma série de coordenadas locais que parametrizam dita hipersuperfície.

O tipo mais simples de hipersuperfícies são as 3-variedades contidas no espaço de quatro dimensões 4.