Aproximação linear
Saltar para a navegação
Saltar para a pesquisa

Em matemática, uma aproximação linear é uma aproximação de uma função geral (mais precisamente, uma função afim). Elas são amplamente usadas no método de diferenças finitas para produzir métodos de primeira ordem para resolver-se ou obter soluções aproximadas para equações.
Definição
Dada uma função contínua, diferenciável e com uma variável real , cujo valor é próximo de uma constante , temos:
Para valores próximos de , a curva descrita pela função se aproxima de uma reta. Dessa forma, se uma reta for traçada tangente a essa curva, no ponto , é possível calcular o valor aproximado de .
Exemplo
Calculemos o valor aproximado de .
- Seja , o problema se resume a encontrar o valor de .
- Precisamos de um valor próximo de 25, e do qual saibamos o valor de , sabemos que então usemos
- Derivando e encontrando o valor de :
- assim,
- Usando a aproximação linear:
- O resultado é bem próximo do valor real de 2,924