Axioma da separação

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Predefinição:Ver desambig O Axioma da separação (também conhecido como Axioma da compreensão ou Axioma de especificação) é um dos axiomas (ou, mais precisamente, um dos esquemas de axiomas) que fazem parte dos Axiomas de Zermelo-Fraenkel da Teoria dos Conjuntos.

Essencialmente, o axioma diz que se um conjunto A existe, e conseguimos descrever (através de uma propriedade) elementos deste conjunto, então existe um conjunto B, subconjunto de A, que contém estes elementos.

Este "axioma" é, a rigor, um esquema de axiomas, porque, para cada propriedade Φ, existe um "axioma da separação".

Axioma

A forma apresentada abaixo se deve a Kunen.[1]

Se z é um conjunto e ϕ é qualquer propriedade que possa ser atribuída a elementos x de z, então existe um subconjunto y de z que contém os elementos x de z e que possuem essa propriedade.

Formalmente: qualquer fórmula ϕ na linguagem da ZFC com variáveis livres entre x,z,w1,,wn:

zw1wnyx(xy(xzϕ))

Notar que esse não é um axioma, mas um esquema de axiomas: para cada ϕ temos um novo axioma.

φ deve ser uma fórmula bem formada[2]

História

Na Teoria ingênua dos conjuntos, o esquema usado (implicitamente) era:

w1wnyx(xy(ϕ))

Ou seja, qualquer fórmula define um conjunto.

Este esquema leva ao paradoxo de Russell e suas variantes, o que não acontece quando é imposta a restrição a elementos de z.

Exemplo

  • A existência da interseção de conjuntos é garantida por este axioma. Formalmente, dados conjuntos y e z, e a propriedade ϕ(x,y,z)=(xy), o axioma diz que existe um conjunto w tal que xwxzϕ

Predefinição:Referências

Ver também

Predefinição:Correlatos


Predefinição:Teoria dos conjuntos

Predefinição:Esboço-matemática

  1. Kunen, Kenneth, 1980. Set Theory: An Introduction to Independence Proofs. Elsevier. ISBN 0-444-86839-9.
  2. Predefinição:Citar web