Constante cosmológica

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Predefinição:Descrição curta

Esboço (em inglês) da linha do tempo do Universo no modelo de matéria escura fria Λ (M.E.F.Λ).Predefinição:Nre A expansão acelerada no último terço da linha do tempo representa a era dominada pela energia escura.

Predefinição:Cosmologia Na cosmologia, a constante cosmológica (geralmente denotada pela letra maiúscula grega lambda: Λ), alternativamente chamada de constante cosmológica de Einstein, é o coeficiente constante de um termo que Albert Einstein adicionou temporariamente às suas equações de campo da relatividade geral. Mais tarde, ele o removeu. Muito mais tarde, foi revivido e reinterpretado como a densidade de energia do espaço, ou energia do vácuo, que surge na mecânica quântica. Está intimamente associado ao conceito de energia escura.[1]

Einstein originalmente introduziu a constante em 1917[2] para contrabalançar o efeito da gravidade e alcançar um universo estático, uma noção que era a visão aceita na época. A constante cosmológica de Einstein foi abandonada após a confirmação de Edwin Hubble de que o universo estava se expandindo.[3] Da década de 1930 até o final da década de 1990, a maioria dos físicos concordou com a escolha de Einstein de definir a constante cosmológica como zero.[4] Isso mudou com a descoberta em 1998 de que a expansão do universo está se acelerando, o que implica que a constante cosmológica pode ter um valor positivo.[5]

Desde a década de 1990, estudos têm mostrado que, assumindo o princípio cosmológico, cerca de 68% da densidade de massa – energia do universo pode ser atribuída à chamada energia escura.[6][7][8] A constante cosmológica Predefinição:Math é a explicação mais simples possível para a energia escura e é usada no atual modelo padrão de cosmologia conhecido como modelo de matéria escura fria Λ (M.E.F.Λ).Predefinição:Nre

De acordo com a Teoria quântica de campos (T.Q.C.),Predefinição:Nre que fundamenta a física de partículas moderna, o espaço vazio é definido pelo estado de vácuo, que é composto por uma coleção de campos quânticos. Todos esses campos quânticos exibem flutuações em seu estado fundamental (menor densidade de energia) decorrentes da energia do ponto zero presente em todo o espaço. Essas flutuações do ponto zero deveriam atuar como uma contribuição para a constante cosmológica Predefinição:Math, mas quando os cálculos são realizados, essas flutuações dão origem a uma enorme energia de vácuo.[9] A discrepância entre a energia de vácuo teorizada da teoria quântica de campos e a energia de vácuo observada da cosmologia é uma fonte de grande controvérsia, com os valores previstos excedendo a observação em cerca de 120 ordens de magnitude, uma discrepância que foi chamada de "a pior previsão teórica da história da física!".[10] Esta questão é chamada de problema da constante cosmológica e é um dos maiores mistérios da ciência, com muitos físicos acreditando que "o vácuo contém a chave para uma compreensão completa da natureza".[11]

História

Einstein incluiu a constante cosmológica como um termo em suas equações de campo para a relatividade geral porque estava insatisfeito com o fato de que, caso contrário, suas equações não permitiriam um universo estático: a gravidade faria com que um universo que inicialmente não estava em expansão se contraísse. Para neutralizar essa possibilidade, Einstein adicionou a constante cosmológica.[3] No entanto, logo depois que Einstein desenvolveu sua teoria estática, as observações de Edwin Hubble indicaram que o universo parece estar se expandindo; isso era consistente com uma solução cosmológica para as equações originais da relatividade geral que haviam sido encontradas pelo matemático Friedmann, trabalhando nas equações de Einstein da relatividade geral. Einstein teria se referido ao seu fracasso em aceitar a validação de suas equações – quando elas haviam previsto a expansão do universo em teoria, antes de ser demonstrada na observação do desvio para o vermelho cosmológico – como seu "maior erro".[12]

Descobriu-se que adicionar a constante cosmológica às equações de Einstein não leva a um universo estático em equilíbrio porque o equilíbrio é instável: se o universo se expande ligeiramente, a expansão libera energia de vácuo, que causa ainda mais expansão. Da mesma forma, um universo que se contrai levemente continuará se contraindo.[13]

No entanto, a constante cosmológica permaneceu um assunto de interesse teórico e empírico. Empiricamente, os dados cosmológicos das últimas décadas sugerem fortemente que nosso universo tem uma constante cosmológica positiva.[5] A explicação desse valor pequeno, mas positivo, é um desafio teórico remanescente, o chamado problema da constante cosmológica.

Algumas generalizações iniciais da teoria gravitacional de Einstein, conhecidas como teorias clássicas de campo unificadasPredefinição:Ill, introduziram uma constante cosmológica em bases teóricas ou descobriram que ela surgiu naturalmente da matemática. Por exemplo, Arthur Eddington afirmou que a versão da constante cosmológica da equação de campo do vácuo expressava a propriedade "epistemológica" de que o universo é "automedido", e a teoria puramente afim de Erwin Schrödinger usando um princípio variacionalPredefinição:Ill simples produziu a equação de campo com um termo cosmológico.

Sequência de eventos (1915–1998)

  • Em 1915, Einstein publica suas equações da relatividade geral, sem uma constante cosmológica Predefinição:Math.
  • Em 1917, Einstein acrescenta o parâmetro Predefinição:Math às suas equações quando percebe que sua teoria implica um universo dinâmico para o qual o espaço é uma função do tempo. Ele então dá a essa constante um valor que faz com que seu modelo de Universo permaneça estático e eterno (universo estático de Einstein).
  • Em 1922, o físico russo Alexander Friedmann mostra matematicamente que as equações de Einstein (qualquer que seja Predefinição:Math) permanecem válidas em um universo dinâmico.
  • Em 1927, o astrofísico belga Georges Lemaître mostra que o Universo está se expandindo combinando a relatividade geral com observações astronômicas, as de Hubble em particular.
  • Em 1931, Einstein aceita a teoria de um universo em expansão e propõe, em 1932 com o físico e astrônomo holandês Willem de Sitter, um modelo de um Universo em expansão contínua com constante cosmológica zero (espaço-tempo de Einstein – de Sitter).
  • Em 1998, duas equipes de astrofísicos, uma liderada por Saul Perlmutter, a outra liderada por Brian Schmidt e Adam Riess, realizaram medições em supernovas distantes que mostraram que a velocidade da recessão das galáxias em relação à Via Láctea aumenta com o tempo. O universo está em expansão acelerada, o que requer um valor de Predefinição:Math estritamente positivo. O universo conteria uma misteriosa energia escura produzindo uma força repulsiva que contrabalança a frenagem gravitacional produzida pela matéria contida no universo (ver Modelo cosmológico padrão). Predefinição:Quebra de parágrafoPor este trabalho, Perlmutter, Schmidt e Riess receberam, em conjunto, o Prêmio Nobel de física em 2011.

Equação

Proporções estimadas (em inglês) de matéria escura e energia escura (que pode ser a constante cosmológica[1]) no universo. De acordo com as teorias atuais da física, a energia escura agora domina como a maior fonte de energia do universo, em contraste com épocas anteriores, quando era insignificante.

A constante cosmológica Predefinição:Math aparece nas equações de campo de Einstein na forma

Rμν12Rgμν+Λgμν=κTμν,

onde o tensor de Ricci Predefinição:Math, a escalar de Ricci Predefinição:Math e o tensor métricoPredefinição:Ill Predefinição:Math descrevem a estrutura do espaço-tempo, o tensor de tensão–energia Predefinição:Math descreve a densidade de energia, a densidade de momento e a tensão naquele ponto no espaço-tempo, e Predefinição:Math. A constante gravitacional Predefinição:Mvar e a velocidade da luz Predefinição:Mvar são constantes universais. Quando Predefinição:Math é zero, isso se reduz à equação de campo da relatividade geral geralmente usada no século XX. Quando Predefinição:Math é zero, a equação de campo descreve o espaço vazio (um vácuo).

A constante cosmológica tem o mesmo efeito que uma densidade de energia intrínseca do vácuo, Predefinição:MvarPredefinição:Subscrito (e uma pressão associada). Nesse contexto, é comumente movido para o lado direito da equação usando Predefinição:Math. É comum citar valores de densidade de energia diretamente, embora ainda usando o nome "constante cosmológica". A dimensão de Predefinição:Math é geralmente entendida como comprimentoPredefinição:Sup.

Usando os valores conhecidos em 2018 e as unidades de Planck para Predefinição:Math = 0,6889±0,0056 e a constante de Hubble Predefinição:Mvar = 67,66±0,42 (km/s)/Mpc = (2,1927664±0,0136)×10−18 s−1, Predefinição:Math tem o valor de

Λ=3(H0c)2ΩΛ=1,1056×1052 m2=2,888×10122lP2

onde lP é o comprimento de Planck. Uma densidade de energia de vácuo positiva resultante de uma constante cosmológica implica uma pressão negativa e vice-versa. Se a densidade de energia for positiva, a pressão negativa associada conduzirá a uma expansão acelerada do universo, conforme observado. (Ver Energia escura e Inflação cósmica para mais detalhes.)

Predefinição:Math (ômega sub lambda)

Em vez da própria constante cosmológica, os cosmólogos geralmente se referem à razão entre a densidade de energia devido à constante cosmológica e a densidade crítica do universo, o ponto de inflexão para uma densidade suficiente para impedir que o universo se expanda para sempre. Essa razão geralmente é denotada por Predefinição:Math e é estimada em 0,6889±0,0056, de acordo com resultados publicados pela Colaboração PlanckPredefinição:Ill em 2018.[14]

Em um universo plano, Predefinição:Math é a fração da energia do universo devida à constante cosmológica, ou seja, o que chamaríamos intuitivamente de fração do universo que é formada por energia escura. Observe que esse valor muda com o tempo: a densidade crítica muda com o tempo cosmológicoPredefinição:Ill, mas a densidade de energia devido à constante cosmológica permanece inalterada ao longo da história do universo, porque a quantidade de energia escura aumenta à medida que o universo cresce, mas a quantidade de matéria não.[15]Predefinição:Sfnp[16]

Equação de estado

Outra razão que é usada pelos cientistas é a equação de estado, geralmente denotada Predefinição:Mvar, que é a razão da pressão que a energia escura coloca no universo para a energia por unidade de volume.[17] Essa razão é Predefinição:Nowrap para a constante cosmológica usada nas equações de Einstein; formas alternativas de variação de tempo de energia de vácuo, como a quintessência, geralmente usam um valor diferente. O valor Predefinição:Mvar = −1,028±0,032, medido pela Colaboração Planck (2018)[14] é consistente com Predefinição:Val, assumindo que Predefinição:Mvar não muda ao longo do tempo cósmico.

Valor positivo

M.E.F. lambda, expansão acelerada do universo. A linha do tempo neste diagrama esquemático (em inglês) se estende desde o Big bang/a era da inflação 13,7 bilhões de anos atrás até o tempo cosmológico atual.

Observações anunciadas em 1998 da relação distância – desvio para o vermelho para supernovas do tipo Ia[5] indicaram que a expansão do universo está se acelerando, se assumirmos o princípio cosmológico.[6][7] Quando combinados com medições da radiação cósmica de fundo, estas implicaram um valor de Predefinição:Math ≈ 0,7,[18] um resultado que foi apoiado e refinado por medições mais recentes[19] (assim como trabalhos anteriores[20][21]). Se alguém assumir o princípio cosmológico, como no caso de todos os modelos que usam a métrica de Friedmann–Lemaître–Robertson–Walker, embora existam outras causas possíveis de um universo em aceleração, como a quintessência, a constante cosmológica é, em muitos aspectos, a solução mais simples. Assim, o modelo de matéria escura fria lambda (M.E.F.ΛPredefinição:Nre), o atual modelo padrão de cosmologia que usa a métrica de F.L.R.W., inclui a constante cosmológica, que é medida como sendo da ordem de Predefinição:Val. Pode ser expresso como Predefinição:Val (por multiplicação com Predefinição:Math, ou seja, ≈Predefinição:Val ou como 10−122 Predefinição:Subscrito−2[22] (onde Predefinição:Subscrito é o comprimento de Planck). O valor é baseado em medições recentes da densidade de energia do vácuo, Predefinição:Math = 5,96×10Predefinição:Exp kg/m3 ≘ 5,3566×10Predefinição:Exp J/m3 = 3,35 GeV/m3.[23] No entanto, devido à tensão de HubblePredefinição:Ill e ao dipolo do fundo cósmico de micro-ondas (F.C.M.)Predefinição:IllPredefinição:Nre, recentemente foi proposto que o princípio cosmológico não é mais verdadeiro no universo tardio e que a métrica de F.L.R.W. falha,[24][25][26] então é possível que as observações geralmente atribuídas a um universo em aceleração são simplesmente o resultado do princípio cosmológico não aplicado no universo tardio.[6][7]

Como foi visto apenas recentemente, pelos trabalhos de 't Hooft, Susskind e outros, uma constante cosmológica positiva tem consequências surpreendentes, como uma entropia máxima finita do universo observável (ver Princípio holográfico).[27]

Previsões

Teoria quântica de campos

Predefinição:VT Predefinição:Não resolvido Um grande problema pendente é que a maioria das teorias quânticas de campos prevê um valor enorme para o vácuo quântico. Uma suposição comum é que o vácuo quântico é equivalente à constante cosmológica. Embora não exista nenhuma teoria que suporte essa suposição, argumentos podem ser feitos a seu favor.[28]

Tais argumentos são geralmente baseados na análise dimensional e na teoria de campo efetivaPredefinição:Ill. Se o universo é descrito por uma teoria de campo quântico local eficaz até a escala de Planck, então esperaríamos uma constante cosmológica da ordem de Mpl2 (1 em unidades Planck reduzidas). Conforme observado acima, a constante cosmológica medida é menor do que isso por um fator de ~ 10120. Essa discrepância foi chamada de "a pior previsão teórica da história da física".[10]

Algumas teorias supersimétricas requerem uma constante cosmológica que seja exatamente zero, o que complica ainda mais as coisas. Este é o problema da constante cosmológica, o pior problema de ajuste fino na Física: não existe uma maneira natural conhecida de derivar a minúscula constante cosmológica usada na cosmologia a partir da física de partículas.

Nenhum vácuo na paisagem da teoria das cordasPredefinição:Ill é conhecido por apoiar uma constante cosmológica metaestável e positiva e, em 2018, um grupo de quatro físicos apresentou uma conjectura controversa que implicaria que al universo não existePredefinição:Ill.[29]

Princípio antrópico

Uma possível explicação para o valor pequeno, mas diferente de zero, foi observada por Steven Weinberg (em 1987) seguindo o princípio antrópico.[30] Weinberg explica que se a energia do vácuo assumisse valores diferentes em diferentes domínios do universo, então os observadores necessariamente mediriam valores semelhantes aos observados: a formação de estruturas de suporte à vida seria suprimida em domínios onde a energia do vácuo é muito maior. Especificamente, se a energia do vácuo for negativa e seu valor absoluto for substancialmente maior do que parece ser no universo observado (digamos, um fator de 10 vezes maior), mantendo todas as outras variáveis (por exemplo, densidade da matéria) constantes, isso significaria que o universo é fechado; além disso, seu tempo de vida seria menor do que a idade do nosso universo, possivelmente muito curto para a formação de vida inteligente. Por outro lado, um universo com uma grande constante cosmológica positiva se expandiria muito rápido, impedindo a formação de galáxias. Segundo Weinberg, os domínios onde a energia do vácuo é compatível com a vida seriam comparativamente raros. Usando esse argumento, Weinberg previu que a constante cosmológica teria um valor inferior a cem vezes o valor atualmente aceito.[31] Em 1992, Weinberg refinou esta previsão da constante cosmológica para 5 a 10 vezes a densidade da matéria.[32]

Este argumento depende da densidade de energia do vácuo ser constante ao longo do espaço-tempo, como seria de se esperar se a energia escura fosse a constante cosmológica. Não há evidências de que a energia do vácuo varie, mas pode ser o caso se, por exemplo, a energia do vácuo for (mesmo em parte) o potencial de um campo escalar como o ínflaton residual (ver também [[Quintessência|Quintessência]]). Outra abordagem teórica que trata do assunto é a das teorias do multiverso, que preveem um grande número de universos "paralelos" com diferentes leis da Física e/ou valores de constantes fundamentais. Novamente, o princípio antrópico afirma que só podemos viver em um dos universos que seja compatível com alguma forma de vida inteligente. Os críticos afirmam que essas teorias, quando usadas como explicação para o ajuste fino, cometem a falácia do apostador inversaPredefinição:Ill.

Em 1995, o argumento de Weinberg foi refinado por Alexander VilenkinPredefinição:Ill para prever um valor para a constante cosmológica que era apenas dez vezes a densidade da matéria,[33] ou seja, cerca de três vezes o valor atual desde então determinado.

Falha em detectar energia escura

Uma tentativa de diretamente observar e relacionar quanta ou campos como a teoria symmetronPredefinição:Ill ou partícula camaleônicaPredefinição:Ill com a energia escura, em um ambiente de laboratório, falhou em detectar uma nova força.Uma tentativa de observar diretamente a energia escura em um laboratório falhou em detectar uma nova força.[34] Inferir a presença de energia escura por meio de sua interação com bárions na radiação cósmica de fundo também levou a um resultado negativo,[35] embora as análises atuais tenham sido derivadas apenas no regime de perturbação linear. Também é possível que a dificuldade em detectar a energia escura se deva ao fato de que a constante cosmológica descreve uma interação conhecida existente (por exemplo, campo eletromagnético).[36]

Ver também

Notas

Predefinição:Reflist

Referências

Predefinição:Reflist

Bibliografia

Literatura primária

Predefinição:Refbegin

Predefinição:Refend

Literatura secundária: notícias, artigos científicos populares e livros

Predefinição:Refbegin

Predefinição:Refend

Literatura secundária: artigos de revisão, monografias e livros didáticos

Predefinição:Refbegin

Predefinição:Refend

Ligações externas

Predefinição:Correlatos

Predefinição:Einstein Predefinição:Portal3 Predefinição:Controle de autoridade

  1. 1,0 1,1 Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome C.C. definition
  2. Predefinição:Harvp
  3. 3,0 3,1 Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome Rugh 2001 3
  4. Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome Λ = 0?
  5. 5,0 5,1 5,2 Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome 1998 discovery
  6. 6,0 6,1 6,2 Predefinição:Citar periódico
  7. 7,0 7,1 7,2 Predefinição:Citar periódico
  8. Predefinição:Harvp
  9. Predefinição:Harvp
  10. 10,0 10,1 Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome C.C. problem
  11. Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome C.C. problem 3
  12. Erro de citação: Etiqueta <ref> inválida; não foi fornecido texto para as refs de nome Biggest blunder
  13. Predefinição:Harvp
  14. 14,0 14,1 Predefinição:Harvp
  15. Predefinição:Citar web
  16. Predefinição:Citar livro
  17. Predefinição:Harvp
  18. Ver, por exemplo, Predefinição:Harvp
  19. Ver, por exemplo, a tabela 9 em Predefinição:Harvp
  20. Predefinição:Citar periódico
  21. Predefinição:Citar periódico
  22. Predefinição:Harvp
  23. Calculado com base na constante de Hubble e Predefinição:Math de Predefinição:Harvp
  24. Predefinição:Citation
  25. Predefinição:Citar periódico
  26. Predefinição:Citar periódico
  27. Predefinição:Harvp
  28. Predefinição:Harvp
  29. Predefinição:Citar web
  30. Predefinição:Harvp
  31. Predefinição:Harvp
  32. Predefinição:Harvp
  33. Predefinição:Harvp
  34. Predefinição:Citar periódico
  35. Predefinição:Citar periódico
  36. Predefinição:Citar periódico