Pêndulo quântico
O pêndulo quântico é fundamental para entender as rotações internas impedidas na química, as características quânticas dos átomos de dispersão, bem como numerosos outros fenômenos quânticos.[1] Embora um pêndulo não sujeito à aproximação de pequeno ângulo tenha uma não-linearidade inerente, a equação de Schrödinger para o sistema quantizado pode ser resolvida de forma relativamente fácil.[2][3][4]
Equação de Schrödinger
Usando a teoria lagrangiana da mecânica clássica, pode-se desenvolver um hamiltoniano para o sistema. Um pêndulo simples tem uma coordenada generalizada (o deslocamento angular ) e duas restrições (o comprimento da corda e o plano de movimento). As energias cinéticas e potenciais do sistema podem ser encontradas em
Isso resulta no Hamiltoniano
A equação de Schrödinger dependente do tempo para o sistema é
É preciso resolver a equação de Schrödinger independente do tempo para encontrar os níveis de energia e os auto-estados correspondentes. Isso é efetuado melhor alterando a variável independente da seguinte maneira:
Esta é a equação de Mathieu.[5]
onde as soluções são as funções Mathieu.[6][7][8]
Predefinição:Referências Predefinição:Esboço-física Predefinição:Portal3
- ↑ Predefinição:Citar livro
- ↑ Predefinição:Citar livro
- ↑ Predefinição:Citar livro
- ↑ Muhammad Ayub, Atom Optics Quantum Pendulum, 2011, Islamabad, Pakistan.
- ↑ L. Ruby, “Applications of the Mathieu Equation,” Am. J. Phys., vol. 64, pp. 39–44, Jan. 1996
- ↑ Predefinição:Citar livro
- ↑ Predefinição:Citar periódico
- ↑ Predefinição:Citar periódico