Triângulo de Pascal

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Predefinição:Mais-fontes

O triângulo de Yang Hui foi publicado na China, em 1303.

O triângulo de Pascal (alguns países, nomeadamente na Itália, é conhecido como Triângulo de Tartaglia) é um triângulo numérico infinito formado por números binomiais (nk), onde n representa o número da linha e k representa o número da coluna, iniciando a contagem a partir do zero.[1] Na China aparece nas obras de Chu Shi-kié no século XII, na Pérsia o poeta e matemático Omar Khayyám do século XII o utiliza para descobrir raízes n-ésimas, na Alemanha o triângulo aparece no livro de Petrus Apianus no século XVI. No entanto, foi Blaise Pascal que estudou e utilizou as propriedades do triângulo na teoria das probabilidades. O triângulo também pode ser representado como:

0 1 2 3 4 5 6
0 1 1 1 1 1 1 1
1 1 2 3 4 5 6
2 1 3 6 10 15
3 1 4 10 20
4 1 5 15
5 1 6
6 1

Ele define os números no triângulo por recursão: Chame o número na (m+1)-ésima linha e na (n+1)-ésima coluna por tmn. Então tmn = tm-1,n-1 + tm-1,n, para m = 0, 1, 2... e n = 0, 1, 2... As condições de contorno são tm, −1 = 0, t−1, n para m = 1, 2, 3... e n = 1, 2, 3... O gerador t00 = 1. Pascal conclui com a prova,

tmn=(m+n)(m+n1)...(m+1)n(n1)...1. 

Propriedades

O triângulo de Pascal.

Cada número do triângulo de Pascal é igual à soma do número imediatamente acima e do antecessor do número de cima.(n1k1)+(n1k)=(nk)

𝟎𝟏𝟐𝟑𝟒𝟓𝟎1𝟏11𝟐121𝟑1331𝟒146_4_1𝟓151010_51

Portanto:

(42)+(43)=(53)6+4=10

Soma de uma linha

A soma de uma linha no triângulo de Pascal é igual a 2n.

𝟎𝟏𝟐𝟑𝟒𝟓𝟔𝟐𝐧𝟎120=1𝟏1121=2𝟐12122=4𝟑133123=8𝟒1464124=16𝟓1510105125=32𝟔161520156126=64

Soma de uma coluna

A soma da coluna, no triângulo de Pascal, pode ser calculada pela relação (nn)+(n+1n)+...+(n+kn)=(n+k+1n+1).

𝟎𝟏𝟐𝟑𝟒𝟓𝟔𝟎1𝟏11_𝟐12_1𝟑13_31𝟒14_641𝟓151010_51𝟔1615201561

Portanto:(11)+(21)+(31)+(41)=(52)1+2+3+4=10

Simetria

O triângulo de Pascal apresenta simetria em relação à altura, se for escrito da seguinte forma:

111711112113311464151010561520156213535211171[2]

Isso deve-se ao fato de que (nk)=n!k!(nk)!=n!(nk)!k!=(nnk)

Soma de uma diagonal

Conhecendo as fórmulas (nn)+(n+1n)+...+(n+kn)=(n+k+1n+1) (Soma de uma coluna) e (nk)=n!k!(nk)!=n!(nk)!k!=(nnk) (Simetria) do triângulo de Pascal, pode-se encontrar a seguinte fórmula para soma de diagonais: (n0)+(n+11)+...+(n+kk)=(n+k+1k).

𝟎𝟏𝟐𝟑𝟒𝟓𝟔𝟎1𝟏1_1𝟐12_1𝟑133_1𝟒1464_1𝟓1510105_1𝟔16152015_61

Novas propriedades – Desigualdades

Em 2014 foram descobertas novas propriedades, envolvendo Desigualdades, quais sejam:[3]

1- Em toda a infinita coluna central do Triângulo, na figura abaixo, o produto de dois de seus elementos é maior do que o produto de dois elementos pertencentes à mesma coluna central, localizados simetricamente entre eles. Por exemplo, na figura abaixo: 1 x 20 > 2 x 6, ou então, 2 x 20 > 6 x 6, ou ainda, 1 x 6 > 2 x 2. Isto vale para toda a coluna central.111711112113311464151010561520156213535211171

2- Dados dois elementos A e B da coluna central, o produto deles é maior do que o produto de dois elementos C e D pertencentes às diagonais que passam por A e por B, que estejam simetricamente localizados em relação a A e a B. Por exemplo, olhando novamente a figura acima: se A = 2 e B = 20, então:

2 x 20 > 3 x 10 > 4 x 4 > 1 x 5.

Se A = 1 e B = 20, então:

1 x 20 > 1 x 10 > 1 x 4 > 1 x 1.

Algoritmos

Python

Recursivo

def pascal_t(m,n):
    if m == 0 and n ==0:
        return 1
    elif n == -1 or m == -1:
        return 0
    else:
        return pascal_t(m-1, n-1) + pascal_t(m-1,n)

Programado

def pascal_tri(lines):
    t= [[0 for i in range(lines)] for i in range(lines)]
    for n in range(lines):
        for k in range(lines):
            if n == 0 and k == 0:
                t[n][k] = 1
            elif n > -1 and k > -1:
                t[n][k] = t[n-1][k-1] + t[n-1][k]
    return t

Java

public void Pascal(int n) {
    int nfilas = n;
    int[] a = new int[1];
    for (int i = 1; i <= nfilas; i++) {
        int[] x = new int[i];
        for (int j = 0; j < i; j++) {
            if (j == 0 || j == (i - 1)) {
                x[j] = 1;
            } else {
                x[j] = a[j] + a[j - 1];
            }
            System.out.print(x[j] + " ");
        }
        a = x;
        System.out.println();
    }
}

Notas

Referências

Ver também


Predefinição:Blaise Pascal