Variedade de Kähler

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Em matemática e na, especialmente, geometria diferencial uma variedade Kähler é uma variedade com três estruturas mutuamente compatíveis; uma estrutura complexa[1], uma estrutura Riemanniana, e uma estrutura simplética[2]. Numa variedade Kähler X existe o Kähler potencialPredefinição:Nota de rodapé[3] e a ligação de Levi-Civita[4][5] correspondente à métrica de X que dá origem a uma ligação na linha de fibrado canónicoPredefinição:Nota de rodapé[6].

Predefinição:Notas Predefinição:Referências

Predefinição:Esboço-matemática Predefinição:Portal3

  1. "Imersões isómétricas de variedades de Kähler em variedades com curvatura holomorfa constante" Faculdade de Lisboa - por Cláudia Vicente Bicho no ano de 2013
  2. P. Deligne, Ph. Griffiths, J. Morgan, D. Sullivan - Real homotopy theory of Kähler manifolds em Invent. Math.volume=29, pgs 245–274 (1975)
  3. PLURISUBHARMONIC FUNCTIONS AND THE STRUCTURE OF COMPLETE KAHLER MANIFOLDS WITH NONNEGATIVE CURVATURE publicado em j. differential geometry 64 (2003) 457-524 por LEI NI & LUEN-FAI TAM
  4. Mn𝐑n(n+1)2
  5. Tullio Levi-Civita "Nozione di parallelismo in una varietà qualunque e consequente specificazione geometrica della curvatura Riemanniana" Rend. Circ. Mat. Palermo| volume 42, pgs 73–205 | 1917
  6. Andrei Moroianu, sobre a geometria de Kähler (2004)