Desigualdade do rearranjo

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Predefinição:Uma-fonte Em matemática, a desigualdade do rearranjo[1] afirma que

xny1++x1ynxσ(1)y1++xσ(n)ynx1y1++xnyn

para cada escolha de números reais

x1xney1yn

e cada permutação

xσ(1),,xσ(n)

de x1, . . ., xn. Se todos os números são diferentes, ou seja

x1<<xney1<<yn,

então o valor mínimo é atingido apenas para a permutação que reverte a ordem, isto é, σ(i) = n − i + 1 para todo i = 1, ..., n, e o valor máximo é atingido apenas para a identidade, isto é, σ(i) = i para todo i = 1, ..., n.

Observe que a desigualdade do rearranjo não faz hipótese sobre o sinal dos números reais envolvidos.

Aplicações

Muitas desigualdades famosas podem ser provadas através da desigualdade do rearranjo, como a desigualdade das médias, a desigualdade de Cauchy-Schwarz e a desigualdade de Chebyshev.

Demonstração

A cota inferior pode ser obtida aplicando a cota superior a

xnx1.

Portanto, basta provas a cota superior. Como há um número apenas finito de permutações, existe pelo menos uma para a qual

xσ(1)y1++xσ(n)yn

é maximal. No caso de haver mais de uma permutação com esta propriedade, escolhemos σ sendo uma das com o máximo número de pontos fixos.

Procedemos agora com uma prova por absurdo para provar que σ precisa ser a permutação identidade. Assuma, portanto, por absurdo, que σ não seja a identidade. Então existe um j em {1, ..., n − 1} tal que σ(j) ≠ j e σ(i) = i para todo i em {1, ..., j − 1}. Então σ(j) > j existe k em {j + 1, ..., n} com σ(k) = j. Agora

j<kyjykej=σ(k)<σ(j)xjxσ(j).(1)

Portanto,

0(xσ(j)xj)(ykyj).(2)

Expandingo este produto e rearranjando termos, temos

xσ(j)yj+xjykxjyj+xσ(j)yk,(3)

Portanto a permutação

τ(i):={ipara i{1,,j},σ(j)para i=k,σ(i)para i{j+1,,n}{k},

produzida de σ pela troca dos valores σ(j) e σ(k), tem pelo menos um ponto fixo a mais que σ, pois σ(j)= j e também atinge o máximo. Isto contradiz a escolha de σ.

Ademais, se

x1<<xney1<<yn,

então temos a desigualdade estrita em (1), (2) e (3) e, portanto, o máximo só pode ser atingido pela identidade.

Predefinição:Referências Predefinição:Controle de autoridade

  1. Predefinição:Citation, Section 10.2, Theorem 368