Falácia matemática

Fonte: testwiki
Saltar para a navegação Saltar para a pesquisa

Na matemática, certos tipos de prova equivocada são frequentemente exibidos e, às vezes, coletados, como ilustrações de um conceito chamado falácia matemática. Há uma distinção entre um erro simples e uma falácia matemática em uma prova, pois um erro em uma prova leva a uma prova inválida, enquanto nos exemplos mais conhecidos de falácias matemáticas há algum elemento de ocultação ou engano na apresentação da prova.

Por exemplo, a razão pela qual a validade falha pode ser atribuída a uma divisão por zero que está oculta pela notação algébrica. Há uma certa qualidade na falácia matemática: como normalmente apresentada, ela leva não apenas a um resultado absurdo, mas o faz de maneira astuta ou inteligente.[1] Portanto, essas falácias, por razões pedagógicas, costumam assumir a forma de provas espúrias de contradições óbvias. Embora as provas sejam falhas, os erros, geralmente por design, são comparativamente sutis, ou projetados para mostrar que certas etapas são condicionais e não são aplicáveis ​​nos casos que são exceções às regras.

A maneira tradicional de apresentar uma falácia matemática é dar uma etapa de dedução inválida misturada com etapas válidas, de modo que o significado de falácia aqui é ligeiramente diferente da falácia lógica. O último geralmente se aplica a uma forma de argumento que não obedece às regras de inferência válidas da lógica, enquanto o passo matemático problemático é tipicamente uma regra correta aplicada com uma suposição errada tácita. Além da pedagogia, a resolução de uma falácia pode levar a insights mais profundos sobre um assunto (por exemplo, a introdução do axioma de Pasch da geometria euclidiana,[2] o teorema das cinco cores da teoria dos grafos). Pseudaria, um antigo livro perdido de provas inválidas, é atribuído a Euclides.[3]

Falácias matemáticas existem em muitos ramos da matemática. Na álgebra elementar, exemplos típicos podem envolver uma etapa em que a divisão por zero é realizada, onde uma raiz é extraída incorretamente ou, mais geralmente, onde diferentes valores de uma função multivalorada são igualados. Falácias bem conhecidas também existem na geometria e cálculo euclidianos elementares.[4][5]

Erros óbvios

Predefinição:Imageframe Há exemplos de resultados matematicamente corretos derivados de raciocínios incorretos. Tal argumento, por mais verdadeira que a conclusão pareça ser, é matematicamente inválido. O seguinte é um exemplo de um erro envolvendo cancelamento indevido: 1664=16/6/4=14.

Por mais que Predefinição:Sfrac = Predefinição:Sfrac está correto, no entanto, é utilizado uma operação falaciosa, é efetuado um cancelamento indevido.[nota 1]

Provas falsas, cálculos ou derivações construídas para produzir um resultado correto, apesar da lógica ou operações incorretas, foram denominados "howlers" por Maxwell.[2] Fora do campo da matemática, o termo howler tem vários significados, geralmente menos específicos.

Divisão por zero

A falácia da divisão por zero possui diversas variantes. A seguinte usa uma divisão por zero disfarçada para "provar" que 2 = 1, mas pode ser modificada para que qualquer número seja igual a qualquer outro número.

  1. Seja a e b iguais, mas diferentes de zero
    a=b
  2. Multiplique por a
    a2=ab
  3. Subtraia b2
    a2b2=abb2
  4. Fatore ambos os lados: no lado esquerdo usa-se a diferença de dois quadrados, e na direita colocando b em evidência
    (ab)(a+b)=b(ab)
  5. Divida por (ab)
    a+b=b
  6. Use o fato que a = b
    b+b=b
  7. Combine os termos semelhantes na esquerda
    2b=b
  8. Divida por b, que é diferente que b
    2=1
C.Q.D.[6]

A falácia está na linha 5: a progressação da linha 4 para a 5 envolve dividir por a − b, que é zero, visto que a = b. Como a divisão por zero é indefinida, o argumento é inválido.

Notas

Predefinição:Listanota

Predefinição:Referências

Bibliografia

Predefinição:Refbegin

Predefinição:Refend

Ligações externas

Predefinição:Commons category

Predefinição:Portal3


Erro de citação: Existem etiquetas <ref> para um grupo chamado "nota", mas não foi encontrada nenhuma etiqueta <references group="nota"/> correspondente