Mecanismo gangorra
Na teoria da grande unificação da física de partículas, e, em particular, em teorias de massas de neutrinos e oscilação de neutrinos, o mecanismo gangorra é um modelo genérico utilizado para entender a grandeza relativa das massas de neutrinos observadas, na ordem de eV, comparado com as massas dos quarks e léptons carregados, que são milhões de vezes mais pesados. O nome do mecanismo de gangorra foi dado por Tsutomu Yanagida em uma conferência em Tóquio em 1981.
Há vários tipos de modelos, cada um estendendo o Modelo Padrão . A versão mais simples, "Tipo 1", estende o Modelo Padrão assumindo dois ou mais campos de neutrinos dextrógiros inertes sob a interação eletrofraca, Predefinição:Nre e a existência de uma escala de massa bem extensa. Isso permite que a escala de massa seja identificável com a escala postulada da grande unificação.
Gangorra tipo 1
Este modelo produz um neutrino leve, para cada um dos três sabores de neutrinos conhecidos, e um neutrino muito pesado correspondente para cada sabor, que ainda não foi observado.
O princípio matemático simples por trás do mecanismo gangorra é a seguinte propriedade de qualquer matriz 2 × 2 da forma
tem dois autovalores :
e
A média geométrica de e é igual a , porque o determinante .
Assim, se um dos autovalores aumenta, o outro diminui e vice-versa. Esse é o porquê do nome " gangorra " do mecanismo.
Aplicando esse modelo aos neutrinos, é assumido muito maior do que Então o maior autovalor, é aproximadamente igual a enquanto o menor autovalor é aproximadamente igual a
Esse mecanismo serve para explicar o porquê as massas dos neutrinos são tão pequenas.[1][2][3][4][5][6][7][8] A matriz Predefinição:Mvar é essencialmente a matriz de massa dos neutrinos. O componente Majorana da massa é comparável com a escala GUT e viola o número leptônico; enquanto os componentes de Dirac da massa estão na ordem muito menor da escala eletrofraca, chamada de VEV ou valor esperado de vácuo inferior. O menor autovalor , então, resulta em uma massa de neutrinos muito pequena, comparável a Predefinição:Val eV, a qual está em acordo qualitativo com experimentos - às vezes considerados como evidências de apoio para a estrutura das Grandes Teorias Unificadas.
Fundo
A matriz Predefinição:Mvar 2 × 2 surge de maneira natural dentro do modelo padrão, considerando a matriz de massa mais geral permitida pela invariância de calibre da ação do modelo padrão e as cargas correspondentes dos campos de léptons e neutrino.
Supondo que o neutrino é a parte do espinor de Weyl, parte de um dubleto de isospin fraco leptônico levógiro; a outra parte é o lépton levógiro l carregado,
como ele está representado o modelo padrão mínimo com as massas do neutrino omitidas, e supondo que é um neutrino dextrógiro de espinor de Weyl postulado, o qual é singleto no isospin fraco, ou seja, é um neutrino que não interage fracamente, como por exemplo o neutrino estéril.
Há três maneiras de formar termos de massa covariantes de Lorentz, resultando em
e seus complexos conjugados, que podem ser escritos como uma forma quadrática ,
Já que o espinor do neutrino dextrógiro não possui cargas em relação a todas as simetrias de calibre do modelo padrão, B é um parâmetro livre o qual pode, a princípio, ter qualquer valor arbitrário.
O parâmetro Predefinição:Mvar é proibido pela simetria de gauge eletrofraca, e só pode aparecer após a quebra espontânea da simetria pelo mecanismo de Higgs, como as massas de Dirac dos léptons carregados. Em particular, como Predefinição:Nowrap tem isospin fracoPredefinição:Frac como o campo de Higgs Predefinição:Mvar, e tem isospin fraco 0, o parâmetro de massa Predefinição:Mvar pode ser gerado a partir das interações de Yukawa com o campo de Higgs, na forma de modelo padrão convencional,
Isso significa que Predefinição:Mvar é naturalmente da ordem do valor esperado do vácuo do campo de Higgs do modelo padrão,
- o valor esperado de vácuo (VEV)
se o acoplamento Yukawa adimensional é de ordem . Pode ser escolhido pequeno de forma consistente, mas valores extremos podem tornar o modelo não perturbativo .
O parâmetro por outro lado, é proibido, já que nenhum singleto sob a influência da hipercarga fraca e isospin renormalizável pode ser formado usando esses componentes do dubleto – apenas um d não renormalizável termo de dimensão 5 é permitido. Esta é a origem do padrão e hierarquia de escalas da matriz de massa dentro do "Tipo Mecanismo de gangorra de 1".
O maior valor de Predefinição:Mvar pode ser motivado no contexto da grande unificação . Nesses modelos, simetrias de calibre ampliadas podem estar presentes, o que inicialmente força na fase não quebrada, mas geram um valor grande e não nulo em torno da escala de sua quebra de simetria espontânea . Então, dada uma massa temos Uma escala enorme, portanto, induziu uma massa de neutrinos dramaticamente pequena para o autovetor
Veja também
- Majoron
- Spinor
Notas de rodapé
Referências
Ligações externas
- ↑ Erro de citação: Etiqueta
<ref>inválida; não foi fornecido texto para as refs de nomeMinkowski-1977-1biln-μ - ↑ Yanagida, T. (1979). “Horizontal gauge symmetry and masses of neutrinos”, Proceedings: Workshop on the Unified Theories and the Baryon Number in the Universe: published in KEK Japan, February 13-14, 1979, Conf. Proc. C7902131, p.95- 99.
- ↑ Predefinição:Citar periódico
- ↑ Erro de citação: Etiqueta
<ref>inválida; não foi fornecido texto para as refs de nomeGellMann-1979 - ↑ Erro de citação: Etiqueta
<ref>inválida; não foi fornecido texto para as refs de nomeYanagida-1980-HorizSym - ↑ Erro de citação: Etiqueta
<ref>inválida; não foi fornecido texto para as refs de nomeGlashow-1979-NATO - ↑ Erro de citação: Etiqueta
<ref>inválida; não foi fornecido texto para as refs de nomeMohapatra-Senjanovic-1980 - ↑ Erro de citação: Etiqueta
<ref>inválida; não foi fornecido texto para as refs de nomeSchechter-Valle-1980