Fecho
Saltar para a navegação
Saltar para a pesquisa
Em topologia, o fecho ou aderência de um subespaço topológico S de X é o menor fechado de X que contém S.
Definição
O fecho de um conjunto , denotado por , é o conjunto formado pelos seus pontos aderentes.[1]
Um conjunto é considerado fechado se é igual ao seu fecho. Ou seja, quando contém todos os seus pontos aderentes.Predefinição:Sfn
Propriedades
- O fecho de S é a intersecção de todos os fechados que contêm S;
- O fecho de um conjunto X () é obtido acrescentando-se a X os seus pontos de acumulação, ou seja, é a união de dois conjuntos, X e (=conjunto dos pontos aderentes): [2]. Por exemplo, se tomarmos o conjunto aberto , então seu fecho será o conjunto fechado [3].
O fecho de S é a união de S com a sua fronteira.
Exemplos
- O fecho do conjunto dos números racionais é a reta . Também o fecho do conjunto dos números irracionais é . e não são conjuntos fechados.[4]
- O fecho de uma bola aberta é uma bola fechada.Predefinição:Sfn
Bibliografia
Predefinição:Esboço-matemática
- ↑ LIMA, Elon Lages. Curso de análise volume 1. Rio de Janeiro, 11ª edição, 2004. Página 170.
- ↑ LIMA, Elon Lages. Curso de análise volume 1. Rio de Janeiro, 11ª edição, 2004. Página 177.
- ↑ Predefinição:Citar web
- ↑ LIMA, Elon Lages. Curso de análise volume 1. Rio de Janeiro, 11ª edição, 2004. Página 171.