Forma quadrática definida
Em matemática, uma forma quadrática definida é uma forma quadrática sobre algum espaço vetorial real V que possui o mesmo sinal (sempre positivo ou sempre negativo) para cada vetor não nulo de V. De acordo com esse sinal, a forma quadrática é chamada positiva-definida ou negativa-definida.
A forma quadrática semi-definida é definida da mesma forma, exceto que "positivo" e "negativo" são substituídos por "não negativo" e "não positivo", respectivamente. Uma forma quadrática indefinida é aquele que tem tanto valores positivos como negativos.
Em termos mais gerais, a definição aplica-se a um espaço vetorial sobre um corpo ordenado.[1]
Forma bilinear simétrica associada
Formas quadráticas correspondem uma-a-uma a formas bilineares simétricas sobre o mesmo espaço.[nota 1] Uma forma bilinear simétrica é também descrita como definida, semidefinida, etc, segundo sua forma quadrática associada. Uma forma quadrática Predefinição:Math e sua forma bilinear simétrica associada Predefinição:Math são relacionadas pelas seguintes equações:
Exemplo
Como exemplo, façamos , e consideremos a forma quadrática
onde Predefinição:Math , Predefinição:Math e Predefinição:Math são constantes. Se Predefinição:Math e Predefinição:Math, a forma quadrática Predefinição:Math é positivo definida. Se uma das constantes é positiva e a outra é zero, então Predefinição:Math é positivo semidefinida. Se Predefinição:Math e Predefinição:Math, então Predefinição:Math é indefinida.
Notas
Predefinição:Reflist Predefinição:Referências
- ↑ Milnor & Husemoller (1973) p.61
Erro de citação: Existem etiquetas <ref> para um grupo chamado "nota", mas não foi encontrada nenhuma etiqueta <references group="nota"/> correspondente